# The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian

@article{Caffarelli1985TheDP, title={The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian}, author={Luis Caffarelli and Louis Nirenberg and Joel Spruck}, journal={Acta Mathematica}, year={1985}, volume={155}, pages={261-301} }

On etudie le probleme de Dirichlet dans un domaine borne Ω de R n a frontiere lisse ∂Ω:F(D 2 u)=ψ dans Ω, u=φ sur ∂Ω

## 745 Citations

Nonlinear elliptic equations and the complex hessian

- Mathematics
- 1988

On etudie le probleme de Dirichlet pour des equations elliptiques de la forme F(u ijpo )=ψ>0 dans Ω, u=o sur ∂Ω, ou {u ijpo }={∂ i ∂ jpo u} est la matrice hessienne complexe d'une fonction u:Ω⊂C n →R

On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations

- MathematicsCalculus of Variations and Partial Differential Equations
- 2021

In this paper, we mainly establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for a class of fully nonlinear second-order elliptic equations related to the…

The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian

- Mathematics
- 2014

The Dirichlet Problem for Degenerate Hessian Equations

- Mathematics
- 2005

Abstract In this paper, we study the Dirichlet problem for a class of fully nonlinear degenerate elliptic equations which depend only on the eigenvalues of the Hessian matrix. We provide a new and…

The Dirichlet Problem of Hessian Equation in Exterior Domains

- Mathematics
- 2020

In this paper, we will obtain the existence of viscosity solutions to the exterior Dirichlet problem for Hessian equations with prescribed asymptotic behavior at infinity by the Perron’s method. This…

Regularity of the Dirichlet Problem for the Non-degenerate Complex Quotient Equations

- Mathematics
- 2020

We study the solvability for the Dirichlet problem of a class of fully nonlinear elliptic equations over complex domains in $\textbf{C}^n$. The equations are in the form of the linear combinations of…

The Neumann problem for a class of fully nonlinear elliptic partial differential equations

- Mathematics
- 2019

In this paper, we establish a global $C^2$ estimates to the Neumann problem for a class of fullly nonlinear elliptic equations. By the method of continuity, we establish the existence theorem of…

The Dirichlet Problem on Almost Hermitian Manifolds

- Mathematics
- 2020

We prove second-order a priori estimate on the boundary for the Dirichlet problem of a class of fully nonlinear equations on compact almost Hermitian manifolds with smooth boundary. As applications,…

The Dirichlet Problem for mixed Hessian type equations on Riemannian manifolds

- Mathematics, Philosophy
- 2022

. In this paper, we derive C 2 estimates for a class of mixed Hessian equations with Dirichlet boundary condition, and obtain the existence theorem of admissible solutions for the classical Dirichlet…

Hessian Equations with Elementary Symmetric Functions

- Mathematics
- 2005

We consider the Dirichlet problem for two types of degenerate elliptic Hessian equations. New results about solvability of the equations in the C 1,1 space are provided.

## References

SHOWING 1-10 OF 14 REFERENCES

The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations

- Mathematics
- 1985

On considere le probleme de Dirichlet pour des equations elliptiques non lineaires d'ordre 2 pour une fonction reelle dans un domaine borne Ω de R n a frontiere lisse ∂Ω

ON DEGENERATE NONLINEAR ELLIPTIC EQUATIONS

- Mathematics
- 1984

Dirichlet problems for degenerate nonlinear elliptic equations of Bellman type are studied, where is a linear elliptic operator of second order. Under certain conditions on the coefficients of , it…

THE INTEGRAL METHOD OF BARRIER FUNCTIONS AND THE DIRICHLET PROBLEM FOR EQUATIONS WITH OPERATORS OF MONGE-AMPÈRE TYPE

- Mathematics
- 1981

A priori boundedness of the solution of the Dirichlet problem is proved for the equation , where is the sum of all principal minors of order in the Hessian . The boundedness in question is relative…

BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS IN A DOMAIN

- Mathematics
- 1984

In this paper the Dirichlet problem is studied for equations of the form and also the first boundary value problem for equations of the form , where and are positive homogeneous functions of the…

On the regularity of the solution of the n‐dimensional Minkowski problem

- Mathematics
- 1976

where xi are the coordinate functions on S". Minkowski then asked the converse of the problem. Namely, given a positive function K defined on S" satisfying the above integral conditions, can we find…

The Dirichlet problem for nonlinear second-order elliptic equations I

- Mathematics
- 1984

A green tire carrier having a wheeled frame providing support at three levels thereof for tire carrying sling members, each sling member being adjustable between several operative positions and an…

Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I

- Mathematics
- 1959

Improper afine hyperspheres of convex rype and a generalizarion of a theorem by K . Jiirgens , Michigan Math

- 1958