Corpus ID: 127391

The Dirac operator of a graph

@article{Knill2013TheDO,
  title={The Dirac operator of a graph},
  author={O. Knill},
  journal={ArXiv},
  year={2013},
  volume={abs/1306.2166}
}
  • O. Knill
  • Published 2013
  • Computer Science, Mathematics
  • ArXiv
  • We discuss some linear algebra related to the Dirac matrix D of a finite simple graph G=(V,E). 

    Topics from this paper.

    Classical mathematical structures within topological graph theory
    • O. Knill
    • Computer Science, Mathematics
    • 2014
    • 12
    • Open Access
    The amazing world of simplicial complexes
    • 10
    • Open Access
    Universality for Barycentric subdivision
    • O. Knill
    • Mathematics, Computer Science
    • 2015
    • 16
    • Open Access
    Isospectral deformations of the Dirac operator
    • 10
    • Open Access
    The graph spectrum of barycentric refinements
    • O. Knill
    • Computer Science, Mathematics
    • 2015
    • 12
    • Open Access
    The strong ring of simplicial complexes
    • O. Knill
    • Mathematics, Computer Science
    • 2017
    • 8
    • Open Access
    Graph invariants from ideas in physics and number theory
    • 1
    • Open Access
    Cauchy-Binet for Pseudo-Determinants
    • 29
    • Open Access
    On cohomology theory of (di)graphs
    • 2
    • Open Access

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 15 REFERENCES
    A graph theoretical Gauss-Bonnet-Chern Theorem
    • O. Knill
    • Mathematics, Computer Science
    • 2011
    • 44
    • Open Access
    On index expectation and curvature for networks
    • O. Knill
    • Mathematics, Computer Science
    • 2012
    • 31
    • Open Access
    The McKean-Singer Formula in Graph Theory
    • O. Knill
    • Computer Science, Mathematics
    • 2013
    • 31
    • Open Access
    A graph theoretical Poincare-Hopf Theorem
    • O. Knill
    • Mathematics, Computer Science
    • 2012
    • 40
    • Open Access
    The theorems of Green-Stokes,Gauss-Bonnet and Poincare-Hopf in Graph Theory
    • O. Knill
    • Mathematics, Computer Science
    • 2012
    • 13
    • Open Access
    An integrable evolution equation in geometry
    • 14
    • Open Access
    An index formula for simple graphs
    • O. Knill
    • Mathematics, Computer Science
    • 2012
    • 20
    • Open Access
    Cauchy-Binet for Pseudo-Determinants
    • 29
    • Open Access
    On the Dimension and Euler characteristic of random graphs
    • O. Knill
    • Mathematics, Computer Science
    • 2011
    • 20
    • Open Access
    A discrete Gauss-Bonnet type theorem
    • 32
    • Open Access