The Cotorsion Dimension of Modules and Rings

@inproceedings{Mao2005TheCD,
  title={The Cotorsion Dimension of Modules and Rings},
  author={Lixin Mao and Nanqing Ding},
  year={2005}
}
In this paper, we introduce a dimension, called the cotorsion dimension, for modules and rings. The relations between the cotorsion dimension and other dimensions are discussed. Various results are developed, some extending known results. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 24 references

Notes on cotorsion modules

L. X. Mao, N. Q. Ding
Comm . Algebra • 2005

Sigma - cotorsion rings

P. A. Guil Asensio, I. Herzog
Adv . Math . • 2005

h - divisible modules

B. L. Lee
Comm . Algebra • 2003

When are pure-injective envelopes of flat modules flat

P. Rothmaler
Comm. Algebra 2002, • 2002

All modules have flat covers

L. Bican, E. Bashir, E. E. Enochs
Bull . London Math . Soc . • 2001

Flat Covers of Modules

J. Xu
Lecture Notes in Math. 1634, • 1996

On almost excellent extensions

W. M. Xue
Algebra Colloq • 1996

On a generalization of excellent extensions

W. M. Xue
Acta Math. Vietnam • 1994

The flat dimensions of injective modules

N. Q. Ding, J. L. Chen
Manus . Math . • 1993

h - divisible and cotorsion modules over one - dimensional Gorenstein rings

E. E. Enochs, O. M. G. Jenda
J . Algebra • 1993

Similar Papers

Loading similar papers…