The Complexity of Finding a Second Hmiltonian Cycle in Cubic Graphs

  title={The Complexity of Finding a Second Hmiltonian Cycle in Cubic Graphs},
  author={Adam Krawczyk},
  journal={J. Comput. Syst. Sci.},
In [4] Papadimitriou proposed to study the complexity of search problems for total functions, in which the existence of a solution is guaranteed via simple combinatorial arguments, but no efficient algorithmic solutions are known. See also [3, 5, 1] for other related works. One of the problems considered in [4] is the following: given a cubic graph G, and a Hamiltonian cycle C in G, compute a Hamiltonian cycle in G different than C. Smith's theorem asserts that such another cycle always exists… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.


Publications referenced by this paper.
Showing 1-8 of 8 references

On graph-theoretic lemmata and complexity classes, in ``Proc

  • C. Papadimitriou
  • 31st Annual Symposium on Foundations of Computer…
  • 1995
2 Excerpts

Extension of ksubsets to k + 1 subsets : Existence versus constructability

  • P. Pudlak S. Poljak, D. Turzik
  • Comm . Math . Univ . Car .
  • 1994

On inefficient proofs of existence and complexity classes, in ``Proceedings of the 4th Czechoslovak Symposium on Combinatorics'' (M

  • C. H. Papadimitriou
  • Fiedler and J. Nesestril, Eds.), Soc. Czech. Math…
  • 1991
1 Excerpt

Turzik, Extension of k-subsets to k+1 subsets: Existence versus constructability

  • S. Poljak, P. Pudlak
  • Comm. Math. Univ. Car
  • 1982
1 Excerpt

Hamiltonian cycles and uniquely edge colourable graphs, Ann

  • A. G. Thomason
  • Discrete. Math
  • 1978

``Graphs and Hypergraphs,'' North-Holland, Amsterdam, 1973

  • C. Berge
  • 1973

Similar Papers

Loading similar papers…