The Average Measure of Quadratic Forms With Given Determinant and Signature

@article{Siegel1944TheAM,
  title={The Average Measure of Quadratic Forms With Given Determinant and Signature},
  author={Carl Ludwig Siegel},
  journal={Annals of Mathematics},
  year={1944},
  volume={45},
  pages={667}
}
  • C. L. Siegel
  • Published 1 October 1944
  • Mathematics
  • Annals of Mathematics

Geometry-of-numbers methods in the cusp

. In this article, we develop new methods for counting integral orbits having bounded invariants that lie inside the cusps of fundamental domains for coregular representations. We illustrate these

GEOMETRY-OF-NUMBERS METHODS IN THE CUSP AND APPLICATIONS TO CLASS GROUPS

In this article, we compute the mean number of 2-torsion elements in class groups of monogenized cubic orders, when such orders are enumerated by height. In particular, we show that the average size

Mean value of the class number in function fields revisited

In this paper an asymptotic formula for the sum ∑L(1,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}

Mean value of the class number in function fields revisited

In this paper an asymptotic formula for the sum $$\sum L(1,\chi )$$∑L(1,χ) is established for the family of quadratic Dirichlet L-functions over the rational function field over a finite field

Paramétrisation de structures algébriques et densité de discriminants

La composition de Gauss donne une structure de groupe aux orbites de formes quadratiques binaires entieres de discriminant D, sous l'action de SL 2 par changement de variable, essentiellement le

Average values of L-functions in even characteristic

Artin representations of Q of dihedral type

Equivalently, for a positive integer N , the number of isomorphism classes of two-dimensional irreducible monomial Artin representations of Q of conductor N is on average κN . By contrast, if we

LAWS OF COMPOSITION AND ARITHMETIC STATISTICS: FROM GAUSS TO BHARGAVA

γ · f(x, y) = f((x, y) · γ) , where γ ∈ SL2(Z) and f is an integral binary quadratic form. This action preserves the discriminant ∆ = b − 4ac of binary quadratic forms, i.e., ∆(f) = ∆(γ · f). Gauss

SELF-DUAL ARTIN REPRESENTATIONS

Functional equations in number theory are relations between an L-function and some sort of dual L-function, and in general, the L-function and its dual need not coincide. For example, if χ is a

Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten

(vgl. Barban [1]). Ziel der vorliegenden Arbeit ist folgende Verallgemeinerung von (1): k sei totalreeller Zahlkörper mit ungerader Klassenzahl. Sei Ok der Ring der ganzen Zahlen in k, E(Ok) seine
...