The $A_{\text{inf}}$ -cohomology in the semistable case

@article{Cesnavicius2019The,
  title={The \$A\_\{\text\{inf\}\}\$ -cohomology in the semistable case},
  author={Kestutis Cesnavicius and Teruhisa Koshikawa},
  journal={Compositio Mathematica},
  year={2019},
  volume={155},
  pages={2039 - 2128}
}
For a proper, smooth scheme $X$ over a $p$ -adic field $K$ , we show that any proper, flat, semistable ${\mathcal{O}}_{K}$ -model ${\mathcal{X}}$ of $X$ whose logarithmic de Rham cohomology is torsion free determines the same ${\mathcal{O}}_{K}$ -lattice inside $H_{\text{dR}}^{i}(X/K)$ and, moreover, that this lattice is functorial in $X$ . For this, we extend the results of Bhatt–Morrow–Scholze on the construction and the analysis of an $A_{\text{inf}}$ -valued cohomology theory of $p$ -adic… Expand

References

SHOWING 1-10 OF 42 REFERENCES
...
1
2
3
4
5
...