Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils

Abstract

Soil organic C content, a major source of system stability in agroecosystems, is controlled by many factors that have complex interactions. The purpose of this study was to evaluate the major controls over soil organic carbon content, and to predict regional patterns of carbon in range and cultivated soils. We obtained pedon and climate data for 500 rangeland and 300 cultivated soils in the U.S. Central Plains Grasslands, and statistically analyzed relationships between C and soil texture and climate. Regression models of the regional soils database indicated that organic C increased with precipitation and clay content, and decreased with temperature. Analysis of cultivated and rangeland soils indicated that C losses due to cultivation increased with precipitation, and that relative organic C losses are lowest in clay soils. Application of the regression models to a regional climate database showed potential soil organic matter losses to be highest in the northeastern section of the Central Plains Grasslands, decreasing generally from east to west. These statistical data analyses can be combined with more mechanistic models to evaluate controls of soil organic matter formation and turnover, and the implications for regional management. S ORGANIC MATTER is a major component of biogeochemical cycles of the major nutrient elements, and the quantity and quality of soil organic matter both reflect and control primary productivity. The amount of soil organic matter represents the balance of primary productivity and decomposition and as such is a sensitive and integrated measure of change in ecosystem function. Understanding the processes that control soil organic matter dynamics and their I.C. Burke, CM. Yonker, W.J. Parton, C.V. Cole and D.S. Schimel, Natural Resource Ecology Lab., Colorado State Univ., Fort Collins, CO 80523; and K. Flach, Agronomy Dep., Colorado State Univ., Fort Collins, CO 80523. Received 20 June 1988. 'Corresponding author. Published in Soil Sci. Soc. Am. J. 53:800-805 (1989). response to management is essential for informed use of agricultural land. Jenny (1980) describes four sets of state factors responsible for the formation of soil organic matter, and illustrates the influence of parent material, time, climate, and biota as individual controls over soil properties. Controls over soil organic matter properties may have complex interactions; separate analysis of such controls may limit useful predictions. Parton et al. (1988) illustrate the use of a mechanistic model in evaluating simultaneously changing controls. Although such models can be highly successful, field data are necessary to validate predictions across complex gradients. It is widely recognized that cultivation of grassland soils leads to depletion of soil organic matter (Alway, 1909; Russel, 1929; Hide and Metzger, 1939; Haas et al., 1957; and many others). Soil organic C losses of as much as 50% have been documented in the U.S. Central Plains Grasslands (Haas et al., 1957), with losses strongly dependent on management regime and regional location. The extent of soil organic matter depletion has been shown to depend upon the same variables as those controlling soil organic matter formation: climate (Haas et al., 1957; Honeycutt, 1986; Cole et al., 1989), soil texture (Tiessen et al., 1982; Schimel et al., 1985a), landscape position (Schimel et al., 1985a,b; Honeycutt, 1986; Yonker et al., 1988), and management regime (Janzen, 1987; Cole et al., 1988). An integrated assessment of soil organic matter losses across the U.S. Central Grasslands requires analysis of soils with varying temperature, precipitation, and soil physical properties. The objectives of this paper were threefold: (i) to establish quantitative relationships between native soil organic matter levels in the Central Plains Grasslands and key driving variables: precipitation, temperature, and soil texture; (ii) to develop predictions of cultivation induced soil organic carbon loss as a function BURKE ET AL.: TEXTURE, CLIMATE, AND CULTIVATION EFFECTS ON U.S. GRASSLAND SOILS 801 of climate and soil texture; and (iii) to use these predictions to map potential soil organic C depletion.

Extracted Key Phrases

8 Figures and Tables

01020'01'03'05'07'09'11'13'15'17
Citations per Year

171 Citations

Semantic Scholar estimates that this publication has 171 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Burke2002TextureCA, title={Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils}, author={Ingrid C. Burke and Dave S. Schimel}, year={2002} }