Tensor-based methods for blind spatial signature estimation under arbitrary and unknown source covariance structure

@article{Gomes2017TensorbasedMF,
  title={Tensor-based methods for blind spatial signature estimation under arbitrary and unknown source covariance structure},
  author={Paulo R. B. Gomes and Andr{\'e} Lima F{\'e}rrer de Almeida and Jo{\~a}o Paulo Carvalho Lustosa da Costa and Giovanni Del Galdo},
  journal={Digital Signal Processing},
  year={2017},
  volume={62},
  pages={197-210}
}

References

Publications referenced by this paper.
Showing 1-10 of 37 references

Vanderwalle, A multilinear singular value decomposition

L. de Lathauwer, J. B. de Moor
SIAM J. Matrix Anal. Appl • 2000
View 8 Excerpts
Highly Influenced

Tensor Decompositions and Applications

SIAM Review • 2009
View 20 Excerpts
Highly Influenced

Multi-way Analysis in the Food Industry Models

2001
View 18 Excerpts
Highly Influenced

ESPRIT-estimation of signal parameters via rotational invariance techniques

IEEE Trans. Acoustics, Speech, and Signal Processing • 1989
View 5 Excerpts
Highly Influenced

Tensor-Based MIMO Relaying Communication Systems

L. R. Ximenes
PhD thesis, Nice-Sophia Antipolis University, Nice-Sophia Antipolis • 2015
View 1 Excerpt

Fourth-order tensor method for blind spatial signature estimation

2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) • 2014
View 2 Excerpts

Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

F. Roemer
PhD thesis, Ilmenau University of Technology, Ilmenau • 2013
View 1 Excerpt

Multidimen - sional prewhitening for enhanced signal reconstruction and parameter estimation in colored noise with Kronecker correlation structure

K. Liu, H. C. So, F. Roemer, M. Haardt, S. Schwarz
IEEE Trans . Signal Process . • 2013

Similar Papers

Loading similar papers…