Temporal Privacy in Wireless Sensor Networks

Abstract

Although the content of sensor messages describing "events of interest" may be encrypted to provide confidentiality, the context surrounding these events may also be sensitive and therefore should be protected from eavesdroppers. An adversary armed with knowledge of the network deployment, routing algorithms, and the base-station (data sink) location can infer the temporal patterns of interesting events by merely monitoring the arrival of packets at the sink, thereby allowing the adversary to remotely track the spatio-temporal evolution of a sensed event. In this paper, we introduce the problem of temporal privacy for delay- tolerant sensor networks and propose adaptive buffering at intermediate nodes on the source-sink routing path to obfuscate temporal information from an adversary. We first present the effect of buffering on temporal privacy using an information-theoretic formulation and then examine the effect that delaying packets has on buffer occupancy. We evaluate our privacy enhancement strategies using simulations, where privacy is quantified in terms of the adversary's estimation error.

DOI: 10.1109/ICDCS.2007.146
View Slides

Extracted Key Phrases

3 Figures and Tables

Statistics

05101520072008200920102011201220132014201520162017
Citations per Year

58 Citations

Semantic Scholar estimates that this publication has 58 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Kamat2007TemporalPI, title={Temporal Privacy in Wireless Sensor Networks}, author={Pandurang Kamat and Wenyuan Xu and Wade Trappe and Yanyong Zhang}, journal={27th International Conference on Distributed Computing Systems (ICDCS '07)}, year={2007}, pages={23-23} }