Tame automorphisms of C^3 with multidegree of the form (3,d_2,d_3)

@inproceedings{Karas2009TameAO,
  title={Tame automorphisms of C^3 with multidegree of the form (3,d_2,d_3)},
  author={Marek Kara's},
  year={2009}
}
  • Marek Kara's
  • Published 2009
  • Mathematics
  • Let d_3 >= p_2 > p_1 >= 3 be integers such that p_1,p_2 are prime numbers. In this paper we show that the sequence (p_1,p_2,d_3) is the multidegree of some tame automorphisms of C^3 if and only if d_3 is in p_1*N+p_2*N, i.e. if and only if d_3 is a linear combination of p_1 and p_2 with coefficients in N. 

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 10 REFERENCES

    On polynomialrings in two variables, Nieuw Archief voor Wiskunde

    • W. van der Kulk
    • 1953

    The Nagata automorphism is wild.

    On polynomialrings in two variables

    • W Van Der Kulk
    • Nieuw Archief voor Wiskunde
    • 1953

    Umirbayev, The Nagata automorphism is wild

    • U.U.I.P. Shestakov
    • Proc. Natl. Acad. Sci. USA
    • 2003
    VIEW 8 EXCERPTS
    HIGHLY INFLUENTIAL

    On a problem on partitions, Amer

    • A. Brauer
    • J. Math
    • 1942

    Kraków Poland e-mail: Marek.Karas@im.uj