Tamarkin's proof of Kontsevich formality theorem

@article{Hinich2000TamarkinsPO,
  title={Tamarkin's proof of Kontsevich formality theorem},
  author={V. Hinich},
  journal={arXiv: Quantum Algebra},
  year={2000}
}
  • V. Hinich
  • Published 2000
  • Mathematics
  • arXiv: Quantum Algebra
  • In 1998 D. Tamarkin announced a proof of Kontsevich formality theorem based on the existence of structure of homotopy Gerstenhaber algebra in the Hochschild cochains of an associative algebra. In this note we give a detailed explanation of Tamarkin's result. 
    82 Citations

    Paper Mentions

    Formality of cyclic cochains
    • 15
    • PDF
    A formality theorem for Hochschild chains
    • 41
    • PDF
    BV Formality
    • Ricardo Campos
    • Mathematics
    • 2015
    • 2
    • PDF
    Topology of moduli spaces and operads
    • 1
    • PDF
    Erratum to "Homological algebra of homotopy algebras"
    • 24
    • PDF
    Formality of DG algebras (after Kaledin)
    • 27
    • PDF

    References

    SHOWING 1-10 OF 16 REFERENCES
    Another proof of M. Kontsevich formality theorem
    • 205
    • PDF
    A solution of Deligne's conjecture
    • 69
    • PDF
    Homological algebra of homotopy algebras
    • 322
    • PDF
    Koszul duality for Operads
    • 733
    • Highly Influential
    • PDF
    Obstructions to homotopy equivalences
    • 196
    • PDF
    Quantization of Lie bialgebras, I
    • 197
    • Highly Influential
    • PDF
    The Cohomology Structure of an Associative Ring
    • 1,105
    • Highly Influential
    Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé
    • Flato, 1999,
    • 2000
    Tsygan, Non-commutative differential calculus, homotopy BV algebras and formality conjectures, preprint math.KT/0002116
    • Methods Func. Anal. and Topology,
    • 2000