Tamarkin's proof of Kontsevich formality theorem

@article{Hinich2000TamarkinsPO,
  title={Tamarkin's proof of Kontsevich formality theorem},
  author={V. Hinich},
  journal={arXiv: Quantum Algebra},
  year={2000}
}
  • V. Hinich
  • Published 2000
  • Mathematics
  • arXiv: Quantum Algebra
In 1998 D. Tamarkin announced a proof of Kontsevich formality theorem based on the existence of structure of homotopy Gerstenhaber algebra in the Hochschild cochains of an associative algebra. In this note we give a detailed explanation of Tamarkin's result. 
82 Citations

Paper Mentions

Formality of cyclic cochains
  • 15
  • PDF
A formality theorem for Hochschild chains
  • 41
  • PDF
BV Formality
  • 2
  • PDF
Topology of moduli spaces and operads
  • 1
  • PDF
Erratum to "Homological algebra of homotopy algebras"
  • 24
  • PDF
Formality of DG algebras (after Kaledin)
  • 28
  • PDF
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 16 REFERENCES
Another proof of M. Kontsevich formality theorem
  • 207
  • PDF
A solution of Deligne's conjecture
  • 66
  • PDF
Homological algebra of homotopy algebras
  • 325
  • PDF
Koszul duality for Operads
  • 736
  • Highly Influential
  • PDF
Obstructions to homotopy equivalences
  • 197
  • PDF
Quantization of Lie bialgebras, I
  • 197
  • Highly Influential
  • PDF
The Cohomology Structure of an Associative Ring
  • 1,106
  • Highly Influential
Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé
  • Flato, 1999,
  • 2000
Tsygan, Non-commutative differential calculus, homotopy BV algebras and formality conjectures, preprint math.KT/0002116
  • Methods Func. Anal. and Topology,
  • 2000
...
1
2
...