Tailored photon-pair generation in optical fibers.

@article{Cohen2009TailoredPG,
  title={Tailored photon-pair generation in optical fibers.},
  author={O. Cohen and J. Lundeen and B. Smith and G. Puentes and P. J. Mosley and I. Walmsley},
  journal={Physical review letters},
  year={2009},
  volume={102 12},
  pages={
          123603
        }
}
  • O. Cohen, J. Lundeen, +3 authors I. Walmsley
  • Published 2009
  • Medicine, Physics
  • Physical review letters
  • We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of (85.9+/-1.6)%, while theoretical… CONTINUE READING
    125 Citations

    Figures and Topics from this paper.

    Explore Further: Topics Discussed in This Paper

    Photon pair generation in birefringent optical fibers.
    • 99
    • PDF
    Intrinsically narrowband pair photon generation in microstructured fibres
    • 43
    • PDF
    Photon-Pair Sources Based on Intermodal Four-Wave Mixing in Few-Mode Fibers
    • 5
    • PDF
    Fiber-based frequency-degenerate polarization-entanglement photon pair sources for information encoding
    • 1
    Active engineering of four-wave mixing spectral correlations in multiband hollow-core fibers.
    • 6
    • PDF
    Generation of frequency de-correlated photon pairs by using photonic crystal fiber

    References

    SHOWING 1-10 OF 14 REFERENCES
    Phys
    • Rev. Lett. 59, 2044
    • 1987
    Experimental normalized fourfold coincidences in 200 s with a theoretical fit for 1 m fiber. The fit corresponds to ð85:9 1:6Þ% purity
    • PRL 102,
    • 2009
    Nature (London) 409
    • 46 (2001); R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
    • 2001
    Nature (London) 412
    • 417 (2001); V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. Lett. 88, 183602
    • 2002
    Nature 409
    • 46 (2001); R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
    • 2001
    Nature 412
    • 417 (2001); V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. Lett. 88, 183602
    • 2002
    Phys
    • Rev. Lett. 84, 5304 (2000); W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815
    • 2001
    Phys
    • Rev. A 45, 3126 (1992); A.M. Steinberg, P. G. Kwiat, and R.Y. Chiao, Phys. Rev. Lett. 68, 2421 (1992); M.B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M.C. Teich, ibid. 91, 083601
    • 2003
    Phys
    • Rev. Lett. 69, 1293
    • 1992
    Phys
    • Rev. Lett. 100, 110504
    • 2008