# THE SYMPLECTIC TOPOLOGY OF RAMANUJAM'S SURFACE

@article{Seidel2004THEST, title={THE SYMPLECTIC TOPOLOGY OF RAMANUJAM'S SURFACE}, author={Paul Seidel and Ivan Smith}, journal={Commentarii Mathematici Helvetici}, year={2004}, volume={80}, pages={859-881} }

Ramanujam's surface $M$ is a contractible affine algebraic surface which is not homeomorphic to the affine plane. For any $m>1$ the product $M^m$ is diffeomorphic to Euclidean space ${mathbb R}^{4m}$. We show that, for every $m>0$, $M^m$ cannot be symplectically embedded into a subcritical Stein manifold. This gives the first examples of exotic symplectic structures on Euclidean space which are convex at infinity. It follows that any exhausting plurisubharmonic Morse function on $M^m$ has at…

## 42 Citations

Symplectic Structures on the cotangent bundles of open 4-manifolds

- Mathematics
- 2012

We show that, for any two orientable smooth open 4-manifolds $X_0,X_1$ which are homeomorphic, their cotangent bundles $T^*X_0,T^*X_1$ are symplectomorphic with their canonical symplectic structure.…

Exact Calabi-Yau categories and disjoint Lagrangian spheres

- Mathematics
- 2019

An exact Calabi-Yau structure, originally introduced by Keller, is a special kind of smooth Calabi-Yau structures in the sense of Kontsevich-Vlassopoulos. For a Weinstein manifold $M$, the existence…

Symplectic mapping class groups of some Stein and rational surfaces

- Mathematics
- 2009

In this paper we compute the homotopy groups of the symplectomorphism groups of the 3-, 4- and 5-point blow-ups of the projective plane (considered as monotone symplectic Del Pezzo surfaces). Along…

Exact Calabi-Yau categories and q-intersection numbers

- Mathematics
- 2019

An exact Calabi-Yau structure, originally introduced by Keller, is a special kind of smooth Calabi-Yau structures in the sense of Kontsevich-Vlassopoulos. For a Weinstein manifold $M$, the existence…

Symplectic Cohomology of Contractible Surfaces

- Mathematics
- 2014

In 2004, Seidel and Smith proved that the Liouville manifold associated to Ramanujams surface contains a Lagrangian torus which is not displaceable by Hamiltonian isotopy, and hence that higher…

Projective twists and the Hopf correspondence

- Mathematics
- 2020

We introduce the Hopf correspondence, a Lagrangian correspondence aimed at assigning Lagrangian spheres $L_1, \dots , L_m$ of a Liouville manifold $(Y, \Omega)$ to given Lagrangian (real, complex,…

Altering symplectic manifolds by homologous recombination

- Mathematics
- 2010

We use symplectic cohomology to study the non-uniqueness of symplectic structures on the smooth manifolds underlying affine varieties. Starting with a Lefschetz fibration on such a variety and a…

Symplectic fillings of asymptotically dynamically convex manifolds I

- Mathematics
- 2020

We consider exact fillings with vanishing first Chern class of asymptotically dynamically convex (ADC) manifolds. We construct two structure maps on positive symplectic cohomology and prove that they…

Symplectic fillings of asymptotically dynamically convex manifolds I

- Mathematics
- 2019

We consider exact fillings with vanishing first Chern class of asymptotically dynamically convex (ADC) manifolds. We construct two structure maps on positive symplectic cohomology and prove that they…

Computability and the growth rate of symplectic homology

- Mathematics
- 2011

For each n greater than 7 we explicitly construct a sequence of Stein manifolds diffeomorphic to complex affine space of dimension n so that there is no algorithm to tell us in general whether a…

## References

SHOWING 1-10 OF 45 REFERENCES

Functors and Computations in Floer Homology with Applications, I

- Mathematics
- 1999

Abstract. This paper is concerned with Floer cohomology of manifolds with contact type boundary. In this case, there is no conjecture on this ring, as opposed to the compact case, where it is…

Floer homology, symplectic and complex hyperbolicities

- Mathematics
- 2004

On one side, from the properties of Floer cohomology, invariant associated to a symplectic manifold, we define and study a notion of symplectic hyperbolicity and a symplectic capacity measuring it.…

Geometry of Low-dimensional Manifolds: Filling by holomorphic discs and its applications

- Mathematics
- 1991

The survey is devoted to application of the technique of filling by holomorphic discs to different symplectic and complex analytic problems. COMPLEX AND SYMPLECTIC RECOLLECTIONS J -Convexity Let X, J…

Symplectic geometry of plurisubharmonic functions

- Mathematics
- 1997

In these lectures we describe symplectic geometry related to the notion of pseudo-convexity (or J-convexity). The notion of J-convexity, which is a complex analog of convexity, is one of the basic…

A topological characterisation of the affine plane as an algebraic variety

- Mathematics
- 1971

This investigation arose from an attempt to answer the following question, raised by M. P. Murthy: If X is an affine algebraic variety over a field k such that X x A' e A3, where An denotes the…

Handlebody construction of Stein surfaces

- Mathematics
- 1998

The topology of Stein surfaces and contact 3-manifolds is studied by means of handle decompositions. A simple characterization of homeomorphism types of Stein surfaces is obtained-they correspond to…

Holomorphic curves in symplectic geometry

- Mathematics
- 1994

Introduction: Applications of pseudo-holomorphic curves to symplectic topology.- 1 Examples of problems and results in symplectic topology.- 2 Pseudo-holomorphic curves in almost complex manifolds.-…

The Künneth formula in Floer homology for manifolds with restricted contact type boundary

- Mathematics
- 2006

We prove the Künneth formula in Floer (co)homology for manifolds with restricted contact type boundary. We use Viterbo's definition of Floer homology, involving the symplectic completion by adding a…

Open Algebraic Surfaces

- Mathematics
- 2000

To put the subject matter of " Open Algebraic Surfaces " in perspective, let me begin with a very classical question: If k ⊂ L are fields and L ⊂ k(x 1 , · · · , x n) = k (n) (field of rational…

Pseudo holomorphic curves in symplectic manifolds

- Mathematics
- 1985

Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called…