THE AMENABILITY AND NON-AMENABILITY OF SKEW FIELDS

@inproceedings{Elek2005THEAA,
  title={THE AMENABILITY AND NON-AMENABILITY OF SKEW FIELDS},
  author={G{\'a}bor Elek},
  year={2005}
}
We investigate the amenability of skew field extensions of the complex numbers. We prove that all skew fields of finite Gelfand-Kirillov transcendence degree are amenable. However there are both amenable and non-amenable finitely generated skew fields of infinite Gelfand-Kirillov transcendence degree. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 11 references

L 2 - invariants : theory and applications to geometry and K - theory , Ergebnisse der Matematik and ihrer Grenzgebiete , Springer - Verlag , Berlin 44 (

Makar-Limanov
Forum Math • 2002

L2-invariants: theory and applications to geometry and K-theory, Ergebnisse der Matematik and ihrer Grenzgebiete, Springer-Verlag, Berlin

W. Lück
2002
View 2 Excerpts

Division rings and group von Neumann algebras

Linnell
J . Eur . Math . Soc . • 1999

Skew fields. Theory of general division rings, Encyclopedia of Mathematics and its Applications

P. M. Cohn
1995
View 1 Excerpt

On the GK-transcendence degree of division rings of fractions of polycyclic group rings

A. M. Aizenbud
Comm. Algebra • 1994
View 1 Excerpt

Division rings and group von Neumann algebras, Forum Math

P. A. Linnell
1993
View 1 Excerpt

Kazhdan’s property (T ) and amenable representations

M.E.B. Bekka, A. Valette
Math Z • 1993
View 1 Excerpt

Bekka, Amenable unitary representations of locally compact groups

E B.M.
Inventiones Math • 1990
View 3 Excerpts

The skew field of fractions of the Weyl algebra contains a free noncommutative subalgebra

L. Makar-Limanov
Comm. Algebra • 1983
View 1 Excerpt