T-Duality via Gerby Geometry and Reductions
@article{Bunke2013TDualityVG, title={T-Duality via Gerby Geometry and Reductions}, author={Ulrich Bunke and Thomas Nickelsen Nikolaus}, journal={arXiv: Differential Geometry}, year={2013} }
We consider topological T-duality of torus bundles equipped with S^{1}-gerbes. We show how a geometry on the gerbe determines a reduction of its band to the subsheaf of S^{1}-valued functions which are constant along the torus fibres. We observe that such a reduction is exactly the additional datum needed for the construction of a T-dual pair. We illustrate the theory by working out the example of the canonical lifting gerbe on a compact Lie group which is a torus bundles over the associated…
11 Citations
Group dualities, T‐dualities, and twisted K ‐theory
- MathematicsJ. Lond. Math. Soc.
- 2018
The connection between Langlands duality and T-duality for compact simple Lie groups, which appeared in work of Daenzer-Van Erp and Bunke-Nikolaus, is explored further and a duality for orientifolds based on complex Lie groups with an involution is studied.
Categorical structures on bundle gerbes and higher geometric prequantisation
- Mathematics
- 2017
We present a construction of a 2-Hilbert space of sections of a bundle gerbe, a suitable candidate for a prequantum 2-Hilbert space in higher geometric quantisation. We introduce a direct sum on the…
Towards an extended/higher correspondence
- MathematicsComplex Manifolds
- 2021
Abstract In this short paper, we will review the proposal of a correspondence between the doubled geometry of Double Field Theory and the higher geometry of bundle gerbes. Double Field Theory is…
Algebraic K-theory, K-regularity, and T -duality of O ∞ -stable C ∗ -algebras
- Mathematics
- 2016
We develop an algebraic formalism for topological T -duality. More precisely, we show that topological T -duality actually induces an isomorphism between noncommutative motives that in turn…
Poincaré duality and Langlands duality for extended affine Weyl groups
- MathematicsAnnals of K-Theory
- 2018
In this paper we construct an equivariant Poincar\'e duality between dual tori equipped with finite group actions. We use this to demonstrate that Langlands duality induces a rational isomorphism…
Global Double Field Theory is Higher Kaluza‐Klein Theory
- MathematicsFortschritte der Physik
- 2020
Kaluza‐Klein Theory states that a metric on the total space of a principal bundle P→M , if it is invariant under the principal action of P, naturally reduces to a metric together with a gauge field…
T-Duality for Langlands Dual Groups
- Mathematics
- 2012
This article addresses the question of whether Langlands duality for complex reductive Lie groups may be implemented by T-dualization. We prove that for reductive groups whose simple factors are of…
Algebraic K-theory, K-regularity, and 𝕋$\mathbb {T}$-duality of 𝒪∞$\mathcal {O}_{\infty }$-stable C∗-algebras
- Mathematics
- 2013
We develop an algebraic formalism for topological 𝕋$\mathbb {T}$-duality. More precisely, we show that topological 𝕋$\mathbb {T}$-duality actually induces an isomorphism between noncommutative…
The Puzzle of Global Double Field Theory: Open Problems and the Case for a Higher Kaluza‐Klein Perspective
- MathematicsFortschritte der Physik
- 2021
The history of the geometry of Double Field Theory is the history of string theorists' effort to tame higher geometric structures. In this spirit, the first part of this paper will contain a brief…
Fourier-Mukai Transforms from T-Duality
- Mathematics
- 2015
We derive Fourier-Mukai Transforms from topological T-Duality and show that they are equivalences.
References
SHOWING 1-10 OF 41 REFERENCES
A Groupoid Approach to Noncommutative T-Duality
- Mathematics
- 2007
Topological T-duality is a transformation taking a gerbe on a principal torus bundle to a gerbe on a principal dual-torus bundle. We give a new geometric construction of T-dualization, which allows…
Topology and H-flux of T-dual manifolds.
- MathematicsPhysical review letters
- 2004
A general formula for the topology and H-flux of the T-dual of a type II compactification is presented, finding that the manifolds on each side of the duality are circle bundles whose curvatures are given by the integral of theDual H- flux over the dual circle.
T-Duality: Topology Change from H-Flux
- Mathematics
- 2004
T-duality acts on circle bundles by exchanging the first Chern class with the fiberwise integral of the H-flux, as we motivate using E8 and also using S-duality. We present known and new examples…
On the Topology of T-Duality
- Mathematics
- 2005
We study a topological version of the T-duality relation between pairs consisting of a principal U(1)-bundle equipped with a degree-three integral cohomology class. We describe the homotopy type of a…
Periodic Twisted Cohomology and T-Duality
- Mathematics
- 2011
The initial motivation of this work was to give a topological interpretation of two-periodic twisted de-Rham cohomology which is generalizable to arbitrary coefficients. To this end we develop a…
THE TOPOLOGY OF T-DUALITY FOR Tn-BUNDLES
- Mathematics
- 2006
In string theory, the concept of T-duality between two principal Tn-bundles E and E over the same base space B, together with cohomology classes h ∈ H3(E,ℤ) and ĥ ∈ H3(E,ℤ), has been introduced. One…
Duality for topological abelian group stacks and T-duality
- Mathematics
- 2007
We extend Pontrjagin duality from topological abelian groups to certain locally compact group stacks. To this end we develop a sheaf theory on the big site of topological spaces S in order to prove…
T-duality for principal torus bundles and dimensionally reduced Gysin sequences
- Mathematics
- 2004
We reexamine the results on the global properties of T-duality for principal circle bundles in the context of a dimensionally reduced Gysin sequence. We will then construct a Gysin sequence for…
Sheaf theory for stacks in manifolds and twisted cohomology for S 1 -gerbes
- Mathematics
- 2007
In this paper we give a sheaf theory interpretation of the twisted cohomology of manifolds. To this end we develop a sheaf theory on smooth stacks. The derived push-forward of the constant sheaf with…