• Corpus ID: 229340143

Szeg\H{o} kernel asymptotics on some non-compact complete CR manifolds

@inproceedings{Hsiao2020SzegHoKA,
  title={Szeg\H\{o\} kernel asymptotics on some non-compact complete CR manifolds},
  author={Chin-Yu Hsiao and George Marinescu and Huan Wang},
  year={2020}
}
We establish Szeg\H{o} kernel asymptotic expansions on non-compact strictly pseudoconvex complete CR manifolds with transversal CR $\mathbb{R}$-action under certain natural geometric conditions. 

References

SHOWING 1-10 OF 23 REFERENCES

Equivariant Kodaira Embedding for CR Manifolds with Circle Action

We consider a compact CR manifold with a transversal CR locally free circle action endowed with a rigid positive CR line bundle. We prove that a certain weighted Fourier-Szeg\H{o} kernel of the CR

Exponential estimate for the asymptotics of Bergman kernels

We prove an exponential estimate for the asymptotics of Bergman kernels of a positive line bundle under hypotheses of bounded geometry. Further, we give Bergman kernel proofs of complex geometry

Szegő kernels and equivariant embedding theorems for CR manifolds

We consider a compact connected CR manifold with a transversal CR locally free $\mathbb R$-action endowed with a rigid positive CR line bundle. We prove that a certain weighted Fourier-Szeg\H{o}

On the singularities of the Szegő projections on lower energy forms

Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n − 1, n > 2. Let � (q) b be the Gaffney extension of Kohn Laplacian for (0,q)-forms. We show that the spectral

An Explicit Formula for Szegő Kernels on the Heisenberg Group

In this paper, we give an explicit formula for the Szegő kernel for (0, q) forms on the Heisenberg group Hn+1.

Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles

In this paper we study the asymptotic behaviour of the spectral function corre- sponding to the lower part of the spectrum of the Kodaira Laplacian on high tensor powers of a holomorphic line bundle.

Microlocal Analysis for Differential Operators: An Introduction

Introduction 1. Symbols and oscillatory integrals 2. The method of stationary phase 3. Pseudodifferential operators 4. Application to elliptic operators and L2 continuity 5. Local symplectic geometry

Projections in several complex variables

This thesis consists two parts. In the first part, we completely study the heat equation method ofMenikoff-Sjostrand and apply it to the Kohn Laplacian defined on a compact orientable connected CR

Sur l'identite de Bochner-Kodaira-Nakano en geometrie hermitienne

Nous demontrons une identite de Kodaira-Nakano generalisee, reliant les operateurs de Laplace-Beltrami holomorphes et anti-holomorphes pour un fibre vectoriel holomorphe hermitien au-dessus d'une

Sur la singularité des noyaux de Bergman et de Szegö

© Journées Équations aux dérivées partielles, 1975, tous droits réservés. L’accès aux archives de la revue « Journées Équations aux dérivées partielles »