Synthesis of linear and cyclic carbophosphazenes via an oxidative chlorination strategy.

Abstract

The use of a mild, oxidative chlorination route for the synthesis of linear and cyclic carbophosphazenes is described. For example, chlorination of the linear PNCN chain Ph(2)P-N=C(Ph)-N(SiMe(3))(2) (1) with C(2)Cl(6) led to the clean formation of the previously known 8- and 6-membered rings [Ph(2)PNC(Ph)N](2) (2) and [Ph(2)PNC(Ph)NP(Ph)(2)N] (3), respectively. In a similar fashion, the N-alkyl-substituted PNCN derivatives, Ph(2)P-N=C(Ph)-N((t)Bu)SiMe(3) (4) and Ph(2)P-N=C(Ph)-N(i)Pr(2) (7) were readily converted by C(2)Cl(6) into the halogenated derivatives ClPh(2)P=N-C(Ph)=N(t)Bu (5) and [ClPh(2)P=N=C(Ph)-N(i)Pr(2)]Cl (8), respectively. Protonation of 5 was accomplished using HCl and gave the carbophosphazenium salt [ClPh(2)P=N-C(Ph)=N((t)Bu)H]Cl (6). In addition, the isolation of a rare 8-membered P(2)N(4)C(2) heterocycle [(Cl(3)P=N)ClPNC(Ph)NP(Cl)(2)NC(Ph)N] (9) from the reaction of PCl(5) and Li[PhC(NSiMe(3))(2)] is reported. Treatment of 9 with one equivalent of GaCl(3) led to the discovery of an unusual Lewis acid-induced ring contraction reaction whereby the (PNCN)(2) ring in 9 is converted into the novel 6-membered P(2)N(3)C heterocyclic adduct [(Cl(3)P=N)ClPNP(Cl)(2)NC(Ph)N].GaCl(3) (10) with concomitant release of PhCN. Structural characterization of compounds 1, 5, 6, and 8-10 by single-crystal X-ray diffraction is also provided.

Cite this paper

@article{Rivard2004SynthesisOL, title={Synthesis of linear and cyclic carbophosphazenes via an oxidative chlorination strategy.}, author={Eric Rivard and Alan J Lough and Tristram Chivers and Ian Manners}, journal={Inorganic chemistry}, year={2004}, volume={43 2}, pages={802-11} }