Synthesis of gallium oxide nanomaterials on source material supply and their growth behavior.

Abstract

High purity and single crystalline beta-Ga2O3 nanomaterials with various morphologies were obtained through the simple thermal evaporation of metal gallium powder on a gold-coated silicon substrate in argon. In this report, the growth behavior of the beta-Ga2O3 nanomaterials as a function of synthesis time and source material supply was delicately surveyed via FESEM and HRTEM. The synthesis time and source material supply affected morphology, growth rate and growth mechanism of the grown nanomaterials. It was confirmed that the growth mechanism of the beta-Ga2O3 nanomaterials was varied in the order of VLS, combination of VLS and VS, and VS, by increasing the synthesis time without regard to the supply of the source material. When the source materials supply was increased, many beta-Ga2O3 nanomaterials with various morphologies, such as sheet, triangle, and belt-like were appeared. It was confirmed that the oxidation reaction of gallium and oxygen for the formation of gallium oxide nanomaterials carried out the precipitation of gallium at the same time due to the supersaturation of the gallium atoms in gold catalyst. The growth and formation mechanism of the beta-Ga2O3 nanomaterials are discussed herein.

Cite this paper

@article{Cho2011SynthesisOG, title={Synthesis of gallium oxide nanomaterials on source material supply and their growth behavior.}, author={Kwon Koo Cho and Sung Joo Sim and Hye Sung Kim}, journal={Journal of nanoscience and nanotechnology}, year={2011}, volume={11 7}, pages={6183-92} }