# Symplectic fixed points and holomorphic spheres

@article{Floer1989SymplecticFP, title={Symplectic fixed points and holomorphic spheres}, author={Andreas Floer}, journal={Communications in Mathematical Physics}, year={1989}, volume={120}, pages={575-611} }

LetP be a symplectic manifold whose symplectic form, integrated over the spheres inP, is proportional to its first Chern class. On the loop space ofP, we consider the variational theory of the symplectic action function perturbed by a Hamiltonian term. In particular, we associate to each isolated invariant set of its gradient flow an Abelian group with a cyclic grading. It is shown to have properties similar to the homology of the Conley index in locally compact spaces. As an application, we…

## 500 Citations

A symplectic fixed point theorem for toric manifolds

- Mathematics
- 1995

In this paper, by a toric manifold we mean a non-singular symplectic quotient M = ℂ n //T k of the standard symplectic space by a linear torus action. Such a toric manifold is in fact a complex…

Rigid subsets of symplectic manifolds

- MathematicsCompositio Mathematica
- 2009

Abstract We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the…

J-holomorphic curves and symplectic invariants

- Mathematics
- 1997

Given an almost complex structure J on a manifold M, a map f from a Riemann surface to M is called a pseudoholomorphic (or J-holomorphic) curve if at each point p of the surface, the ordinary…

J-holomorphic curves and symplectic invariants

- Mathematics
- 1997

Given an almost complex structure J on a manifold M, a map f from a Riemann surface to M is called a pseudoholomorphic (or J-holomofphic) curve if at each point p of the surface, the ordinary…

Symplectic homology and periodic orbits near symplectic submanifolds

- Mathematics, Physics
- 2002

Abstract
We show that a small neighborhood of a closed symplectic
submanifold in a geometrically bounded aspherical symplectic manifold has
non-vanishing symplectic homology. As a consequence, we…

Construction of spectral invariants of Hamiltonian diffeomorphisms on general symplectic manifolds

- Mathematics
- 2004

In this paper, we develop a mini-max theory of the action functional over the semi-infinite cycles via the chain level Floer homology theory and construct spectral invariants of Hamiltonian…

Growth of maps, distortion in groups and symplectic geometry

- Mathematics
- 2002

Abstract.In the present paper we study two sequences of real numbers associated to a symplectic diffeomorphism:¶• The uniform norm of the differential of its n-th iteration;¶• The word length of its…

Calabi quasimorphism and quantum homology

- Mathematics
- 2002

We prove that the group of area-preserving diffeomorphisms of the 2-sphere admits a non-trivial homogeneous quasimorphism to the real numbers with the following property. Its value on any…

On the Fixed Points of a Hamiltonian Diffeomorphism in Presence of Fundamental Group

- Mathematics
- 2016

Let M be a weakly monotone symplectic manifold and H be a time-dependent 1-periodic Hamiltonian; we assume that the 1-periodic orbits of the corresponding time-dependent Hamiltonian vector field are…

Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces

- Mathematics
- 2007

We define Floer homology for a time-independent, or autonomous Hamiltonian on a symplectic manifold with contact type boundary, under the assumption that its 1-periodic orbits are transversally…

## References

SHOWING 1-10 OF 43 REFERENCES

A relative morse index for the symplectic action

- Mathematics
- 1988

The notion of a Morse index of a function on a finite-dimensional manifold cannot be generalized directly to the symplectic action function a on the loop space of a manifold. In this paper, we define…

Pseudo holomorphic curves in symplectic manifolds

- Mathematics
- 1985

Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called…

A symplectic fixed point theorem for ℂℙn

- Mathematics
- 1985

SummaryTwo symplectic diffeomorphisms,φ0,φ1 of a symplectic manifold (X, ω) are said to be homologous if there exists a smooth homotopyφ1,t∋[0, 1] of symplectic diffeomorphisms between them such that…

The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold

- Mathematics
- 1983

Abstract : The following conjecture of V. I. Arnold is proved: every measure preserving diffeomorphism of the torus T2, which is homologeous to the identity, and which leaves the center of mass…

A refinement of the Conley index and an application to the stability of hyperbolic invariant sets

- MathematicsErgodic Theory and Dynamical Systems
- 1987

Abstract A compact and isolated invariant set of a continuous flow possesses a so called Conley index, which is the homotopy type of a pointed compact space. For this index a well known continuation…

A Morse equation in Conley's index theory for semiflows on metric spaces

- MathematicsErgodic Theory and Dynamical Systems
- 1985

Abstract Given a compact (two-sided) flow, an isolated invariant set S and a Morse-decomposition (M1, …, Mn) of S, there is a generalized Morse equation, proved by Conley and Zehnder, which relates…

Examples of symplectic structures

- Mathematics
- 1987

SummaryIn this paper we construct symplectic forms
$$\tilde \omega _k , k \geqq 0$$
, on a compact manifold
$${\tilde Y}$$
which have the same homotopy theoretic invariants, but which are not…