Symmetry of singular solutions for a weighted Choquard equation involving the fractional \begin{document}$ p $\end{document} -Laplacian

@inproceedings{Le2020SymmetryOS,
  title={Symmetry of singular solutions for a weighted Choquard equation involving the fractional \begin\{document\}\$ p \$\end\{document\} -Laplacian},
  author={Phuong Ngo Le},
  year={2020}
}
Let \begin{document}$ u \in L_{sp} \cap C^{1, 1}_{\rm loc}(\mathbb{R}^n\setminus\{0\}) $\end{document} be a positive solution, which may blow up at zero, of the equation \begin{document}$ (-\Delta)^s_p u = \left(\frac{1}{|x|^{n-\beta }} * \frac{u^q}{|x|^\alpha}\right) \frac{u^{q-1 }}{|x|^\alpha} \quad\text{ in } \mathbb{R}^n \setminus \{0\}, $\end{document} where \begin{document}$ 0 , \begin{document}$ 0 , \begin{document}$ p>2 $\end{document} , \begin{document}$ q\ge 1 $\end{document} and… CONTINUE READING

Similar Papers