Symmetrization of rings in space

@article{Gehring1961SymmetrizationOR,
  title={Symmetrization of rings in space},
  author={F. Gehring},
  journal={Transactions of the American Mathematical Society},
  year={1961},
  volume={101},
  pages={499-519}
}
  • F. Gehring
  • Published 1961
  • Mathematics
  • Transactions of the American Mathematical Society
holds. We then estimate mod R' either by means of the space analogues of the Grötzsch and Teichmüller rings or by means of spherical annuli. The two bounds we obtain are given in Theorem 3 of §17 and in Theorem 4 of §22. In a later paper we will show how these upper bounds can be used to derive a number of important distortion theorems for quasiconformal mappings in space. For a summary of these results see [4]. 

References

SHOWING 1-8 OF 8 REFERENCES
Über ein Minimalproblem der mathematischen Physik
RINGS AND QUASICONFORMAL MAPPINGS IN SPACE.
  • F. Gehring
  • Medicine, Mathematics
  • Proceedings of the National Academy of Sciences of the United States of America
  • 1961
On the Conformal Capacity in Space
Isoperimetrische Ungleichungen für Bereiche auf Flächen.
Untersuchungen über konforme und quasikonforme Abbildung
  • Deutsche Math. vol
  • 1938
and G
  • Pólya, Inequalities, Cambridge University Press,
  • 1934