# Symmetries of stochastic colored vertex models

@article{Galashin2021SymmetriesOS, title={Symmetries of stochastic colored vertex models}, author={Pavel Galashin}, journal={The Annals of Probability}, year={2021} }

Author(s): Galashin, Pavel | Abstract: We discover a new property of the stochastic colored six-vertex model called flip invariance. We use it to show that for a given collection of observables of the model, any transformation that preserves the distribution of each individual observable also preserves their joint distribution. This generalizes recent shift-invariance results of Borodin-Gorin-Wheeler. As limiting cases, we obtain similar statements for the Brownian last passage percolation, the…

## Figures from this paper

## 18 Citations

### Observables of Stochastic Colored Vertex Models and Local Relation

- MathematicsCommunications in Mathematical Physics
- 2021

We study the stochastic colored six vertex (SC6V) model and its fusion. Our main result is an integral expression for natural observables of this model -- joint q-moments of height functions. This…

### Hidden invariance of last passage percolation and directed polymers

- MathematicsThe Annals of Probability
- 2022

Last passage percolation and directed polymer models on $\mathbb{Z}^2$ are invariant under translation and certain reflections. When these models have an integrable structure coming from either the…

### Critical varieties in the Grassmannian

- Mathematics
- 2021

We introduce a family of spaces called critical varieties. Each critical variety is a subset of one of the positroid varieties in the Grassmannian. The combinatorics of positroid varieties is…

### Positroids, knots, and $q,t$-Catalan numbers.

- Mathematics
- 2020

We relate the mixed Hodge structure on the cohomology of open positroid varieties (in particular, their Betti numbers over $\mathbb{C}$ and point counts over $\mathbb{F}_q$) to Khovanov--Rozansky…

### Hidden Symmetries of Weighted Lozenge Tilings

- MathematicsElectron. J. Comb.
- 2020

It is proved that this weighted partition function for lozenge tilings, with weights given by multivariate rational functions originally defined by Morales, Pak and Panova (2019) is symmetric for large families of regions.

### Shock fluctuations in TASEP under a variety of time scalings

- Mathematics
- 2020

We consider the totally asymmetric simple exclusion process (TASEP) with two different initial conditions with shock discontinuities, made by block of fully packed particles. Initially a second class…

### Shift invariance of half space integrable models

- Mathematics
- 2022

. We formulate and establish symmetries of certain integrable half space models, analogous to recent results on symmetries for models in a full space. Our starting point is the colored stochastic six…

### Orthogonal polynomial duality and unitary symmetries of multi--species ASEP$(q,\boldsymbol{\theta})$ and higher--spin vertex models via $^*$--bialgebra structure of higher rank quantum groups

- Mathematics
- 2022

We propose a novel, general method to produce orthogonal polynomial dualities from the ∗ –bialgebra structure of Drinfeld–Jimbo quantum groups. The ∗ –structure allows for the construction certain…

### Cutoff profile of the Metropolis biased card shuffling

- Mathematics
- 2022

We consider the Metropolis biased card shuﬄing (also called the multi-species ASEP on a ﬁnite interval or the random Metropolis scan). Its convergence to stationary was believed to exhibit a…

### Joint $q$-moments and shift invariance for the multi-species $q$-TAZRP on the infinite line

- Mathematics
- 2022

This paper presents a novel method for computing certain particle locations in the multi–species q – TAZRP (totally asymmetric zero range process). The method is based on a decomposition of the…

## References

SHOWING 1-10 OF 73 REFERENCES

### Shift‐invariance for vertex models and polymers

- MathematicsProceedings of the London Mathematical Society
- 2022

We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The…

### Coloured stochastic vertex models and their spectral theory

- Mathematics
- 2018

This work is dedicated to $\mathfrak{sl}_{n+1}$-related integrable stochastic vertex models; we call such models coloured. We prove several results about these models, which include the following: …

### Hidden invariance of last passage percolation and directed polymers

- MathematicsThe Annals of Probability
- 2022

Last passage percolation and directed polymer models on $\mathbb{Z}^2$ are invariant under translation and certain reflections. When these models have an integrable structure coming from either the…

### Colored five‐vertex models and Lascoux polynomials and atoms

- MathematicsJournal of the London Mathematical Society
- 2020

We construct an integrable colored five‐vertex model whose partition function is a Lascoux atom based on the five‐vertex model of Motegi and Sakai and the colored five‐vertex model of Brubaker, the…

### Renormalization Fixed Point of the KPZ Universality Class

- Mathematics
- 2011

The one dimensional Kardar–Parisi–Zhang universality class is believed to describe many types of evolving interfaces which have the same characteristic scaling exponents. These exponents lead to a…

### Positroid varieties: juggling and geometry

- MathematicsCompositio Mathematica
- 2013

Abstract While the intersection of the Grassmannian Bruhat decompositions for all coordinate flags is an intractable mess, it turns out that the intersection of only the cyclic shifts of one Bruhat…

### The Kardar-Parisi-Zhang Equation and Universality Class

- Mathematics
- 2011

Brownian motion is a continuum scaling limit for a wide class of random processes, and there has been great success in developing a theory for its properties (such as distribution functions or…

### From multiline queues to Macdonald polynomials via the exclusion process

- MathematicsAmerican Journal of Mathematics
- 2022

abstract:Recently James Martin introduced {\it multiline queues}, and used them to give a combinatorial formula for the stationary distribution of the multispecies asymmetric simple exclusion process…

### The directed landscape

- Mathematics
- 2018

The conjectured limit of last passage percolation is a scale-invariant, independent, stationary increment process with respect to metric composition. We prove this for Brownian last passage…