Symmetries in Physical World

Abstract

II Symmetries in Classical Particle Mechanics 4 1 Hamiltonian and Lagrangian Formulations of Classical Particle Mechanics 5 1.1 Basic De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Generalized Dynamical Variables . . . . . . . . . . . . . . . . . . . . 7 1.2 Dynamical Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Euler-Lagrange's Equation of Motion . . . . . . . . . . . . . . . . . . 11 1.2.2 Hamilton's Equation of Motion . . . . . . . . . . . . . . . . . . . . . 12 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Uniqueness of Lagrangian Function 13 3 Canonical Variables and Canonical Transforms 14

Cite this paper

@inproceedings{Agrawal2002SymmetriesIP, title={Symmetries in Physical World}, author={Mukul Babu Agrawal}, year={2002} }