Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100.

Abstract

Conjugative plasmid transfer is an important mechanism for diversifying prokaryotic genomes and disseminating antibiotic resistance. Relaxases are conjugative plasmid-encoded proteins essential for plasmid transfer. Relaxases bind and cleave one plasmid strand site- and sequence-specifically before transfer of the cleaved strand. TraI36, a domain of F plasmid TraI that contains relaxase activity, binds a plasmid sequence in single-stranded form with subnanomolar KD and high sequence specificity. Despite 91% amino acid sequence identity, TraI36 domains from plasmids F and R100 discriminate between binding sites. The binding sites differ by 2 of 11 bases, but both proteins bind their cognate site with three orders of magnitude higher affinity than the other site. To identify specificity determinants, we generated variants having R100 amino acids in the F TraI36 background. Although most retain F specificity, the Q193R/R201Q variant binds the R100 site with 10-fold greater affinity than the F site. The reverse switch (R193Q/Q201R) in R100 TraI36 confers a wild-type F specificity on the variant. Nonadditivity of individual amino acid and base contributions to recognition suggests that the specificity difference derives from multiple interactions. The F TraI36 crystal structure shows positions 193 and 201 form opposite sides of a pocket within the binding cleft, suggesting binding involves knob-into-hole interactions. Specificity is presumably modulated by altering the composition of the pocket. Our results demonstrate that F-like relaxases can switch between highly sequence-specific recognition of different sequences with minimal amino acid substitution.

10 Figures and Tables

Cite this paper

@article{Harley2003SwappingSD, title={Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100.}, author={Matthew J Harley and Joel F. Schildbach}, journal={Proceedings of the National Academy of Sciences of the United States of America}, year={2003}, volume={100 20}, pages={11243-8} }