Sutured annular Khovanov-Rozansky homology
@article{Queffelec2015SuturedAK, title={Sutured annular Khovanov-Rozansky homology}, author={Hoel Queffelec and David E. V. Rose}, journal={arXiv: Quantum Algebra}, year={2015} }
We introduce an sl(n) homology theory for knots and links in the thickened annulus. To do so, we first give a fresh perspective on sutured annular Khovanov homology, showing that its definition follows naturally from trace decategorifications of enhanced sl(2) foams and categorified quantum gl(m), via classical skew Howe duality. This framework then extends to give our annular sl(n) link homology theory, which we call sutured annular Khovanov-Rozansky homology. We show that the sl(n) sutured…
28 Citations
Evaluations of annular Khovanov-Rozansky homology
- Mathematics
- 2019
Author(s): Gorsky, Eugene; Wedrich, Paul | Abstract: We describe the universal target of annular Khovanov-Rozansky link homology functors as the homotopy category of a free symmetric monoidal…
Symmetric Khovanov-Rozansky link homologies
- Mathematics
- 2018
We provide a finite dimensional categorification of the symmetric evaluation of $\mathfrak{sl}_N$-webs using foam technology. As an output we obtain a symmetric link homology theory categorifying the…
Computing annular Khovanov homology
- Mathematics
- 2015
We deVne a third grading on Khovanov homology, which is an invariant of annular links but changes by 1 under stabilization. We illustrate the use of our computer implementation, and give some example…
Khovanov homology for links in thickened multipunctured disks
- Mathematics
- 2021
We define a variant of Khovanov homology for links in thickened disks with multiple punctures. This theory is distinct from the one previously defined by Asaeda, Przytycki, and Sikora, but is related…
Annular Evaluation and Link Homology
- Mathematics
- 2018
We use categorical annular evaluation to give a uniform construction of both $\mathfrak{sl}_n$ and HOMFLYPT Khovanov-Rozansky link homology, as well as annular versions of these theories. Variations…
Khovanov homology and categorification of skein modules
- Mathematics
- 2018
For every oriented surface of finite type, we construct a functorial Khovanov homology for links in a thickening of the surface, which takes values in a categorification of the corresponding gl(2)…
Invariants of 4-manifolds from Khovanov-Rozansky link homology
- Mathematics
- 2019
We use Khovanov-Rozansky gl(N) link homology to define invariants of oriented smooth 4-manifolds, as skein modules constructed from certain 4-categories with well-behaved duals. The technical heart…
Exponential growth of colored HOMFLY-PT homology
- MathematicsAdvances in Mathematics
- 2019
Annular Khovanov homology and knotted Schur–Weyl representations
- MathematicsCompositio Mathematica
- 2017
Let $\mathbb{L}\subset A\times I$ be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of $\mathfrak{sl}_{2}(\wedge )$ , the exterior current algebra…
Extremal weight projectors II.
- Mathematics
- 2018
In previous work, we have constructed diagrammatic idempotents in an affine extension of the Temperley-Lieb category, which describe extremal weight projectors for sl(2), and which categorify…
References
SHOWING 1-10 OF 45 REFERENCES
Khovanov Homology, Sutured Floer Homology, and Annular Links
- Mathematics
- 2010
Lawrence Roberts, extending the work of Ozsvath-Szabo, showed how to associate to a link, L, in the complement of a fixed unknot, B, in S^3, a spectral sequence from the Khovanov homology of a link…
On knot Floer homology in double branched covers
- Mathematics
- 2013
Let L be a link in an thickened annulus. We specify the embedding of this annulus in the three sphere, and consider its complement thought of as the axis to L. In the right circumstances this axis…
Khovanov's homology for tangles and cobordisms
- Mathematics
- 2004
We give a fresh introduction to the Khovanov Homology theory for knots and links, with special emphasis on its extension to tangles, cobordisms and 2-knots. By staying within a world of topological…
Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m)
- Mathematics
- 2012
We show that Khovanov homology (and its sl(3) variant) can be understood in the context of higher representation theory. Specifically, we show that the combinatorially defined foam constructions of…
Khovanov homology is a skew Howe 2–representation of categorified quantum m
- Mathematics
- 2015
We show that Khovanov homology (and its sl3 variant) can be understood in the context of higher representation theory. Specifically, we show that the combinatorially defined foam constructions of…
Categorification of the Kauffman bracket skein module of I-bundles over surfaces
- Mathematics
- 2004
Khovanov defined graded homology groups for links LR 3 and showed that their polynomial Euler characteristic is the Jones polyno- mial of L. Khovanov's construction does not extend in a…
Refined composite invariants of torus knots via DAHA
- Mathematics
- 2015
We define composite DAHA-superpolynomials of torus knots, depending on pairs of Young diagrams and generalizing the composite HOMFLY-PT polynomials in the theory of the skein of the annulus. We…
Clasp technology to knot homology via the affine Grassmannian
- Mathematics
- 2012
We categorify all the Reshetikhin–Turaev tangle invariants of type A. Our main tool is a categorification of the generalized Jones–Wenzl projectors (a.k.a. clasps) as infinite twists. Applying this…
sl.N/-link homology (N 4) using foams and the Kapustin-Li formula
- Mathematics
- 2009
We use foams to give a topological construction of a rational link homology categorifying the slN link invariant, for N>3. To evaluate closed foams we use the Kapustin-Li formula adapted to foams by…
Matrix factorizations and link homology
- Mathematics
- 2008
Author(s): Khovanov, Mikhail; Rozansky, Lev | Abstract: For each positive integer n the HOMFLY polynomial of links specializes to a one-variable polynomial that can be recovered from the…