# Survival of Near-Critical Branching Brownian Motion

@article{Berestycki2011SurvivalON, title={Survival of Near-Critical Branching Brownian Motion}, author={Julien Berestycki and Nathanael Berestycki and Jason Schweinsberg}, journal={Journal of Statistical Physics}, year={2011}, volume={143}, pages={833-854} }

Consider a system of particles performing branching Brownian motion with negative drift $\mu= \sqrt{2 - \varepsilon}$ and killed upon hitting zero. Initially there is one particle at x>0. Kesten (Stoch. Process. Appl. 7:9–47, 1978) showed that the process survives with positive probability if and only if ε>0. Here we are interested in the asymptotics as ε→0 of the survival probability Qμ(x). It is proved that if $L=\pi/\sqrt{\varepsilon}$ then for all x∈ℝ, lim ε→0Qμ(L+x)=θ(x)∈(0,1) exists and…

## 29 Citations

### Speed and fluctuations of N-particle branching Brownian motion with spatial selection

- Mathematics
- 2016

We consider branching Brownian motion on the real line with the following selection mechanism: every time the number of particles exceeds a (large) given number N, only the N right-most particles are…

### A Strong Law of Large Numbers for Super-Critical Branching Brownian Motion with Absorption

- MathematicsJournal of Statistical Physics
- 2020

We consider a (one-dimensional) branching Brownian motion process with a general offspring distribution having at least two moments, and in which all particles have a drift towards the origin where…

### Critical branching Brownian motion with absorption: survival probability

- Mathematics
- 2012

We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $$-\sqrt{2}$$-2. Kesten…

### Branching Brownian motion in strip: survival near criticality

- Mathematics
- 2012

We consider a branching Brownian motion with linear drift in which particles are killed on exiting the interval (0,K) and study the evolution of the process on the event of survival as the width of…

### Velocity of the $L$-branching Brownian motion

- Mathematics
- 2015

We consider a branching-selection system of particles on the real line that evolves according to the following rules: each particle moves according to a Brownian motion during an exponential lifetime…

### Yaglom-type limit theorems for branching Brownian motion with absorption

- Mathematics
- 2020

We consider one-dimensional branching Brownian motion in which particles are absorbed at the origin. We assume that when a particle branches, the offspring distribution is supercritical, but the…

### Branching Brownian motion with selection

- Mathematics
- 2012

In this thesis, branching Brownian motion (BBM) is a random particle system where the particles diffuse on the real line according to Brownian motions and branch at constant rate into a random number…

### Last Passage Percolation and Traveling Fronts

- Mathematics
- 2013

We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida (Phys. Rev. E 70:016106, 2004). The particles can be interpreted as last passage times in directed…

### LAST PASSAGE PERCOLATION AND TRAVELING WAVES 2

- Mathematics
- 2012

We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida [5]. The particles can be interpreted as last passage times in directed percolation on {1, . . . , N}…

### Branching Brownian motion in an expanding ball and application to the mild obstacle problem

- Mathematics
- 2021

We first consider a d-dimensional branching Brownian motion (BBM) evolving in an expanding ball, where the particles are killed at the boundary of the ball, and the expansion is subdiffusive in time.…

## References

SHOWING 1-10 OF 18 REFERENCES

### Survival probabilities for branching Brownian motion with absorption

- Mathematics
- 2007

We study a branching Brownian motion (BBM) with absorption, in which particles move as Brownian motions with drift $-\rho$, undergo dyadic branching at rate $\beta>0$, and are killed on hitting the…

### Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves

- Mathematics
- 2006

### The survival probability of a branching random walk in presence of an absorbing wall

- Mathematics
- 2007

A branching random walk in presence of an absorbing wall moving at a constant velocity v undergoes a phase transition as v varies. The problem can be analyzed using the properties of the…

### Quasi-Stationary Regime of a Branching Random Walk in Presence of an Absorbing Wall

- Mathematics
- 2008

A modified stochastic process is constructed which is equivalent to the original process conditioned on having a single survivor at final time T and it is shown that the properties of the quasi-stationary regime are universal when v→vc.

### Multiplicative Martingales for Spatial Branching Processes

- Mathematics
- 1988

Out of simplicity, we restrict ourselves to consider the dyadic brownian branching process (Nt, t ∈ R+) on the real line. By definition of this process, its particles perform independent brownian…

### The critical random barrier for the survival of branching random walk with absorption

- Mathematics
- 2009

We study a branching random walk on $\r$ with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and…

### Seminar on Stochastic Processes, 1987

- Mathematics
- 1988

Homogeneity for Two-Sided Discrete Markov Processes.- Regularity and the Doob-Meyer Decomposition of Abstract Quasimartingales.- Autour des Ensembles Semi-Polaires.- Vector Valued Stochastic…

### Survival Probability of the Branching Random Walk Killed Below a Linear Boundary

- Mathematics
- 2009

We give an alternative proof of a result by N. Gantert, Y. Hu and Z. Shi on the asymptotic behavior of the survival probability of the branching random walk killed below a linear boundary, in the…

### The critical barrier for the survival of branching random walk with absorption

- Mathematics
- 2012

We study a branching random walk on R with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and…