• Corpus ID: 126085370

Surfaces minimales et la construction de Calabi-Penrose

@inproceedings{Blaine1984SurfacesME,
  title={Surfaces minimales et la construction de Calabi-Penrose},
  author={Harold A. Blaine and J. S. Lawson},
  year={1984}
}
© Société mathématique de France, 1985, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
Twisteurs et applications harmoniques en dimension 4
© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1985-1986, tous droits réservés. L’accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l’accord
The Space of Harmonic Maps of S 2 into S 4
Toute surface superminimale ramifiee d'aire 4πd dans S 4 provient d'une paire de fonctions mesomorphes (f 1 ,f 2 ) de bidegre (d,d) telles que f 1 et f 2 ont le meme diviseur de ramification. On
Geometry of Low-dimensional Manifolds: Minimal surfaces in quaternionic symmetric spaces
Theorem. Any compact Riemann surface may be minimally immersed in S. To prove this, Bryant considers the Penrose fibration π : CP 3 → S = HP . The perpendicular complement to the fibres (with respect
C:/Documents and Settings/Jonas/Mina dokument/Exjobb/Tex/X-jobb-jonasn.dvi
In the 1960s E. Calabi classified all minimal isometric immersions, from the 2sphere into higher dimensional spheres S, in terms of holomorphic maps. He showed that such a map can be lifted to a
Twistors, nilpotent orbits and harmonic maps
Twistor theory provides a useful tool which has applications in the theory of harmonic maps. A good example is the Calabi-Penrose twistor fibration ℂℙ3 → S 4. All harmonic spheres in S 4 can be
Another Report on Harmonic Maps
(1.1) Some of the main results described in [Report] are the following (in rough terms; notations and precise references will be given below): (1) A map (f>:{M,g)-+(N,h) between Riemannian manifolds
Moduli space of branched superminimal immersions of a compact Riemann surface into S 4
In this paper we describe the moduli spaces of degree d branched superminimal immersions of a compact Riemann surface of genus g into S 4 . We prove that when d ≥ max {2 g , g + 2}, such spaces have
Proper superminimal surfaces of given conformal types in the hyperbolic four-space
Let $H^4$ denote the hyperbolic four-space. Given a bordered Riemann surface, $M$, we prove that every smooth conformal superminimal immersion $\overline M\to H^4$ can be approximated uniformly on
Pseudo holomorphic curves in symplectic manifolds
Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called
Reflections on the Early Work of Eugenio Calabi
I first met Gene2 Calabi at Stanford in 1967 while I was still a graduate student. That encounter had special significance in my mathematical life. Most importantly it began a long friendship with a
...
1
2
3
...

References

SHOWING 1-9 OF 9 REFERENCES
Self-duality in four-dimensional Riemannian geometry
We present a self-contained account of the ideas of R. Penrose connecting four-dimensional Riemannian geometry with three-dimensional complex analysis. In particular we apply this to the self-dual
STORA - Regular solutions of the CPn models and further generalizations
  • CERN preprint,
  • 1980
LAWSON, Jr. - Calibrated Geometries
  • Acta Math
  • 1982
S.U.N.Y. Department of rlathematics STONY BROOK - NY
  • 1982
ZAKRZEWSKI - General classical solutions in the CPn-1 model, Nucl
  • Phys. B
  • 1980
Wiley-Interscience
  • New York,
  • 1978
CHERN - On minimal spheres in the 4-sphere, Studies and essays presented to T.W
  • 1970