Sure-fast bilateral filters


Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raised-cosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.

DOI: 10.1109/ICASSP.2012.6288085

Extracted Key Phrases

3 Figures and Tables

Citations per Year

Citation Velocity: 7

Averaging 7 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Kishan2012SurefastBF, title={Sure-fast bilateral filters}, author={Harini Kishan and Chandra Sekhar Seelamantula}, journal={2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, year={2012}, pages={1129-1132} }