[PDF] Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue | Semantic Scholar

Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue

@article{SierpinskiSurUS,
title={Sur une s{\'e}rie potentielle qui, {\'e}tant convergente en tout point de son cercle de convergence, repr{\'e}sente sur ce cercle une fonction discontinue},
author={W. Sierpinski},
journal={Rendiconti del Circolo Matematico di Palermo (1884-1940)},
volume={41},
pages={187-190}
}

The consequences of adopting other definitions of the concepts of sum and convergence of a series are discussed in the light of historical and epistemological contexts. We show that some divergent… Expand

Abstract For a Banach space X let 𝔄 be the set of continuous linear operators A : X → X with ‖A‖ < 1, I be the identity operator and 𝔄 c ≔ {A ∈ 𝔄 : ‖I – A‖ ≤ c(1 – ‖A‖)}, where c ≥ 1 is a… Expand

To improve the energy absorption characteristics of regular triangular tubes, a novel thin-walled structure named as Sierpinski hierarchical triangular (SHT) tube is proposed by connecting the… Expand

In this chapter we explore some of the connections that finite Blaschke products make with operators on Hilbert spaces. In particular, we focus on norms of contractions and the mapping properties of… Expand

The consequences of adopting other definitions of the concepts of sum and convergence of a series are discussed in the light of historical and epistemological contexts. We show that some divergent… Expand

The consequences of adopting other de nitions of the concepts of sum and convergence of a series are discussed in the light of historical and epistemological contexts. We show that some divergent… Expand