Sur les équations du second ordre à $n$ variables analogues à l’équation de Monge-Ampère

@article{GoursatSurL,
  title={Sur les {\'e}quations du second ordre {\`a} \$n\$ variables analogues {\`a} l’{\'e}quation de Monge-Amp{\`e}re},
  author={{\'E}douard Goursat},
  journal={Bulletin de la Soci{\'e}t{\'e} Math{\'e}matique de France},
  volume={27},
  pages={1-34}
}
  • É. Goursat
  • Mathematics
  • Bulletin de la Société Mathématique de France
© Bulletin de la S. M. F., 1899, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
Front d'0nde d'une sous-variete applications aux equations aux derivees partielles non lineaires
On definit de facon intrinseque le front d'onde d'une sous-variete afin d'utiliser dans le cadre de l'analyse microlocale moderne, des methodes classiques permettant d'etudier la propagation des
Meta-symplectic geometry of 3rd order Monge–Ampère equations and their characteristics
This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and
Monge-Ampère Systems with Lagrangian Pairs
The classes of Monge-Amp\`ere systems, decomposable and bi-decomposable Monge-Amp\`ere systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature
Contact geometry of multidimensional Monge-Ampere equations: characteristics, intermediate integrals and solutions
We study the geometry of multidimensional scalar 2 order PDEs (i.e. PDEs with n independent variables) with one unknown function, viewed as hypersurfaces E in the Lagrangian Grassmann bundle M (1)
Solution of Belousov's problem
The authors prove that a local $n$-quasigroup defined by the equation x_{n+1} = F (x_1, ..., x_n) = [f_1 (x_1) + ... + f_n (x_n)]/[x_1 + ... + x_n], where f_i (x_i), i, j = 1, ..., n, are arbitrary
1 7 O ct 2 00 0 GOURSAT ’ S ( n + 1 )-WEBS
We consider the Goursat's (n + 1)-webs of codimension one of two kinds on an n-dimensional manifold. They are characterized by the specific closed form equations or by two special relations between
Monge-Ampère Equations on (Para-)Kähler Manifolds: from Characteristic Subspaces to Special Lagrangian Submanifolds
We present the basic notions and results of the geometric theory of second order PDEs in the framework of contact and symplectic manifolds including characteristics, formal integrability, existence
Contact geometry and non-linear differential equations
Introduction Part I. Symmetries and Integrals: 1. Distributions 2. Ordinary differential equations 3. Model differential equations and Lie superposition principle Part II. Symplectic Algebra: 4.
Classification of Monge–Ampeère Equations
In the current paper we present a survey of our results on classification of the Monge-Ampere equations and operators with two independent variables. We use Lychagin’s approach to such equations.
...
1
2
...