Sur la décomposition de l'espace euclidien en ensembles homogènes

@article{Erds1957SurLD,
  title={Sur la d{\'e}composition de l'espace euclidien en ensembles homog{\`e}nes},
  author={P. Erdős and Solomon Marcus},
  journal={Acta Mathematica Academiae Scientiarum Hungarica},
  year={1957},
  volume={8},
  pages={443-452}
}
  • P. Erdős, S. Marcus
  • Published 1 September 1957
  • Mathematics
  • Acta Mathematica Academiae Scientiarum Hungarica
E, s u p e r p o s a b l e s p a r t r a n s l a t i o n e t s a t u r é m e n t n o n m e s u r a b l e s (c ' e s t-à-d i r e p o u r t o u t E m e s u r a b l e o n a 
On the Steinhaus property in topological groups
Multiply periodic real functions and their period sets
Multiply periodic real functions are rather pathological; continuous ones have to be constant and, as will be shown, measurable ones must be constant a.e. Beyond this, some other properties of these
Finite Partitions of Topological Groups into Congruent Thick Subsets
Abstract We establish fairly general sufficient conditions for a locally compact group (a Baire topological group) to admit partitions into finitely many congruent μ-thick (everywhere of second
On symmetry in languages
TLDR
The symmetry (and various types of non-symmetry) in a string of symbols of an alphabet, symmetry with respec to given positions in that string are considered and their place in Chomsky hierarchy in investigated.

References

SHOWING 1-10 OF 11 REFERENCES
Non-measurable sets and the equation $f(x+y)=f(x)+f(y)$
1. A set of S real numbers which has inner measure m*(S) different from its outer measure m*(S) is non-measurable. An extreme form, which we shall call saturated non-measurability, occurs when m*(S)
Les ensembles homogènes
  • Rendus Acad . Sci . Paris,
  • 1946
RUZIEWICZ, Une application de l'équation fonctionnellef(x +) =f(x) -f(y) à la décomposition de la droite en ensembles superposables, non mesurables
  • Fund . Math .,
  • 1924
...
1
2
...