Sur la contribution unipotente dans la formule des traces d’Arthur pour les groupes généraux linéaires

@article{Chaudouard2014SurLC,
  title={Sur la contribution unipotente dans la formule des traces d’Arthur pour les groupes g{\'e}n{\'e}raux lin{\'e}aires},
  author={Pierre-Henri Chaudouard},
  journal={Israel Journal of Mathematics},
  year={2014},
  volume={218},
  pages={175-271}
}
RésuméLe thème de l’article est l’étude de la partie unipotente de la formule des traces d’Arthur pour un groupe général linéaire. La contribution de l’orbite unipotente régulière ou de ses variantes par blocs est traitée dans un autre article (cf. [10]). Ici on s’intéresse à la contribution des orbites unipotentes simples c’est-à-dire aux orbites de Richardson induites à partir d’un sous-groupe de Levi dont les blocs sont de tailles deux-à-deux distinctes. De manière remarquable, la… Expand
Sur certaines contributions unipotentes dans la formule des traces d'Arthur
abstract:We establish a fine expansion for the geometric part of the Arthur-Selberg trace formula (as it was conjectured by Werner Hoffmann). For the general linear group, we deduce an expression forExpand
Sur une variante des troncatures d’Arthur
We show that, for a large class of test functions, the unipotent contributions in the trace formula for GL(n) over a number field, can be obtained from zeta functions and integrals of EisensteinExpand
On the fine expansion of the unipotent contribution of the Guo–Jacquet trace formula
For a useful class of functions (containing functions whose one finite component is essentially a matrix coefficient of a supercuspidal representation), we establish three results about the unipotentExpand
Harmonic Analysis and the Trace Formula
The purpose of this workshop was to discuss recent results in harmonic analysis that arise in the study of the trace formula. This theme is common to different directions of research on automorphicExpand
The dimensions of spaces of Siegel cusp forms of general degree
In this paper, we give a dimension formula for spaces of Siegel cusp forms of general degree with respect to neat arithmetic subgroups. The formula was conjectured before by several researchers. TheExpand
Zeta Functions for the Adjoint Action of GL(n) and Density of Residues of Dedekind Zeta Functions
We define zeta functions for the adjoint action of \(\mathop{\mathrm{GL}}\nolimits _{n}\) on its Lie algebra and study their analytic properties. For n ≤ 3 we are able to fully analyse theseExpand
Distribution of Hecke eigenvalues for GL(n)
The purpose of this survey is to briefly summarize and explain the results of Matz (Weyl’s law for Hecke operators on GL(n) over imaginary quadratic number fields, 2013, arXiv:1310.6525) and jointExpand
On the Continuity of the Geometric Side of the Trace Formula
We extend the geometric side of Arthur’s non-invariant trace formula for a reductive group G defined over ℚ$\mathbb {Q}$ continuously to a natural space C(G(A)1)$\mathcal {C}(G(\mathbb {A})^{1})$ ofExpand
Sato-Tate equidistribution for families of Hecke-Maass forms on SL(n,R)/SO(n)
We establish the Sato-Tate equidistribution of Hecke eigenvalues on average for families of Hecke--Maass cusp forms on SL(n,R)/SO(n). For each of the principal, symmetric square and exterior squareExpand
The subregular unipotent contribution to the geometric side of the Arthur trace formula for the split exceptional group $G_2$
In this paper, a zeta integral for the space of binary cubic forms is associated with the subregular unipotent contribution to the geometric side of the Arthur trace formula for the split exceptionalExpand
...
1
2
...

References

SHOWING 1-10 OF 29 REFERENCES
SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS
Cet article est une contribution à la fois au calcul du nombre de fibrés de Hitchin sur une courbe projective et à l’explicitation de la partie nilpotente de la formule des traces d’Arthur-SelbergExpand
La formule des traces pour les algèbres de Lie
Abstract. Nous établissons un analogue pour les algèbres de Lie de la formule des traces d'Arthur-Selberg. Soit G un groupe réductif connexe défini sur ${\Bbb Q}$ et $\mathfrak{g}$ son algèbre deExpand
A local trace formula
© Publications mathématiques de l’I.H.É.S., 1991, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://www.Expand
Sur certaines contributions unipotentes dans la formule des traces d'Arthur
abstract:We establish a fine expansion for the geometric part of the Arthur-Selberg trace formula (as it was conjectured by Werner Hoffmann). For the general linear group, we deduce an expression forExpand
A measure on the unipotent variety
Introduction. Suppose that G is a reductive algebraic group defined over Q. There occurs in the trace formula a remarkable distribution on G(A)l which is supported on the unipotent set. It is definedExpand
On a family of distributions obtained from orbits
of distributions. The terms on the right are parametrized by "cuspidal automorphic data", and are defined in terms of Eisenstein series. They have been evaluated rather explicitly in [3]. The termsExpand
THE DIMENSION OF SPACES OF AUTOMORPHIC FORMS.
1. The trace formula of Selberg reduces the problem of calculating the dimension of a space of automorphic forms, at least when there is a compact fundamental domain, to the evaluation of certainExpand
A trace formula for reductive groups I
This paper is a report on the present state of the trace formula for a general reductive group. The trace formula is not so much an end in itself as it is a key to deep results on automorphicExpand
The characters of discrete series as orbital integrals
Suppose that G is a Lie group. which for the purpose of this introduction, we take to be a real form of a simply connected complex semisimple group. Suppose that square integrable representations forExpand
The trace formula in invariant form
Introduction The trace formula for GL2 has yielded a number of deep results on automorphic forms. The same results ought to hold for general groups, but so far, little progress has been made. One ofExpand
...
1
2
3
...