Supplement to “Foundations of Intrinsic Habit Formation”

Abstract

Lemma 23. ∀ T ∈ N, x̄ = (x0, x1, . . . , xT ) ∈ R, ∃ hx̄,T ∈ H such that (x0, x1, . . . , xT , 0, 0, . . .) ∈ C∗ hx̄,T+1 . Proof. For arbitrary h, define c by c0 = x0+φ(h), c h t = xt+φ(hc h 0c h 1 · · · ct−1) for all 1 ≤ t ≤ T , and ct = φ(hc0c1 · · · ct−1) for t > T . φ is strictly increasing, so we may choose hx̄,T ∈ H sufficiently large so that (c hx̄,T… (More)

Topics

  • Presentations referencing similar topics