Supertropical linear algebra

@article{Izhakian2010SupertropicalLA,
  title={Supertropical linear algebra},
  author={Zur Izhakian and Manfred Knebusch and Louis H. Rowen},
  journal={arXiv: Commutative Algebra},
  year={2010}
}
The objective of this paper is to lay out the algebraic theory of supertropical vector spaces and linear algebra, utilizing the key antisymmetric relation of ``ghost surpasses.''Special attention is paid to the various notions of ``base,'' which include d-base and s-base, and these are compared to other treatments in the tropical theory. Whereas the number of elements in a d-base may vary according to the d-base, it is shown that when an s-base exists, it is unique up to permutation and… 
Supertropical Quadratic Forms II
This article is a sequel of [4], where we introduced quadratic forms on a module V over a supertropical semiring R and analysed the set of bilinear companions of a quadratic form q : V → R in case
Layered Tropical Mathematics
Generalizing supertropical algebras, we present a "layered" structure, "sorted" by a semiring which permits varying ghost layers, and indicate how it is more amenable than the "standard"
ELT Linear Algebra
Exploded layered tropical (ELT) algebra is an extension of tropical algebra with a structure of layers. These layers allow us to use classical algebraic results in order to easily prove analogous
Dual spaces and bilinear forms in supertropical linear algebra
Continuing 4, this article investigates finer points of supertropical vector spaces, including dual bases and bilinear forms, with supertropical versions of standard classical results such as the
On pseudo-inverses of matrices and their characteristic polynomials in supertropical algebra☆
Abstract The only invertible matrices in tropical algebra are diagonal matrices, permutation matrices and their products. However, the pseudo-inverse A ∇ , defined as 1 det ⁡ ( A ) adj ( A ) , with
Supertropical matrix algebra III: Powers of matrices and their supertropical eigenvalues☆
Abstract We investigate powers of supertropical matrices, with special attention to the role of the coefficients of the supertropical characteristic polynomial (especially the supertropical trace) in
Supertropical monoids: Basics and canonical factorization
Abstract A supertropical monoid is a monoid U together with a projection onto a totally ordered submonoid e U (where e ∈ U is idempotent). Supertropical monoids are slightly more general than the
Determining Tropical Hypersurfaces
We consider the question of when points in tropical affine space uniquely determine a tropical hypersurface. We introduce a notion of multiplicity of points so that this question may be meaningful
Supertropical Matrix Algebra III : Powers of Matrices and Generalized Eigenspaces
We investigate powers of supertropical matrices, with special attention to the role of the coefficients of the supertropical characteristic polynomial (especially the supertropical trace) in
Commutative ν-Algebra and Supertropical Algebraic Geometry
This paper lays out a foundation for a theory of supertropical algebraic geometry, relying on commutative $\nu$-algebra. To this end, the paper introduces $\mathfrak{q}$-congruences, carried over
...
1
2
3
4
...

References

SHOWING 1-10 OF 21 REFERENCES
Supertropical algebra
We develop the algebraic polynomial theory for “supertropical algebra,” as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of “ghost
Supertropical matrix algebra
AbstractThe objective of this paper is to develop a general algebraic theory of supertropical matrix algebra, extending [11]. Our main results are as follows: The tropical determinant (i.e.,
Supertropical matrix algebra II: Solving tropical equations
We continue the study of matrices over a supertropical algebra, proving the existence of a tangible adjoint of A, which provides the unique right (resp. left) quasi-inverse maximal with respect to
Supertropical polynomials and resultants
Abstract This paper, a continuation of Izhakian and Rowen (in press) [5] , involves a closer study of polynomials over supertropical semirings and their version of tropical geometry. We introduce the
Supertropical matrix algebra III: Powers of matrices and their supertropical eigenvalues☆
Abstract We investigate powers of supertropical matrices, with special attention to the role of the coefficients of the supertropical characteristic polynomial (especially the supertropical trace) in
Linear independence over tropical semirings and beyond
We investigate different notions of linear independence and of ma- trix rank that are relevant for max-plus or tropical semirings. The factor rank and tropical rank have already received attention,
Supertropical Matrix Algebra III : Powers of Matrices and Generalized Eigenspaces
We investigate powers of supertropical matrices, with special attention to the role of the coefficients of the supertropical characteristic polynomial (especially the supertropical trace) in
The q-theory of Finite Semigroups
Discoveries in finite semigroups have influenced several mathematical fields, including theoretical computer science, tropical algebra via matrix theory with coefficients in semirings, and other
Tropical Arithmetic and Matrix Algebra
This article introduces a new structure of commutative semiring, generalizing the tropical semiring, and having an arithmetic that modifies the standard tropical operations, i.e., summation and
Linear systems in (inax,+) algebra
In this paper, we study the general system of linear equations in the (ma,+) algebra. we introduce a symmetrization of this algebra and a new notion called Balance which generalizes classical
...
1
2
3
...