Supersymmetric Extension of the Sine-Gordon Theory with Integrable Boundary Interactions

@article{Inami1995SupersymmetricEO,
  title={Supersymmetric Extension of the Sine-Gordon Theory with Integrable Boundary Interactions},
  author={Takeo Inami and Satoru Odake and Yao-Z Zhang},
  journal={Physics Letters B},
  year={1995},
  volume={359},
  pages={118-124}
}

On the Perturbative Expansion of Boundary Reflection Factors of the Supersymmetric Sinh-Gordon Model

The supersymmetric sinh–Gordon model on a half-line with integrable boundary conditions is considered perturbatively to verify conjectured exact reflection factors to one loop order. Propagators for

A note on the IR limit of the NLIEs of boundary supersymmetric sine-Gordon model

We consider the infrared (IR) limit of the nonlinear integral equations (NLIEs) for the boundary supersymmetric sine-Gordon (BSSG) model, previously obtained from the NLIEs for the inhomogeneous open

Exact boundary scattering matrices of the supersymmetric sine - Gordon theory on a half-line

Using the boundary Yang - Baxter equations and exact results on the bulk S-matrices, we compute exact boundary scattering amplitudes of the supersymmetric sine - Gordon model with integrable boundary

Reflection Matrices for Integrable $N=1$ Supersymmetric Theories

References

SHOWING 1-10 OF 11 REFERENCES

Boundary conditions for integrable quantum systems

A new class of boundary conditions is described for quantum systems integrable by means of the quantum inverse scattering (R-matrix) method. The method proposed allows the author to treat open

Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories

On etudie des relations entre des algebres super-Virasoro et des systemes super-soliton aux niveaux classique et quantique. On deduit explicitement plusieurs membres de l'ensemble infini de quantites

Zamolodchikov, Int.J.Mod.Phys

  • 1994

J.Phys. A: Math.Gen

  • J.Phys. A: Math.Gen
  • 1991

I. Cherednik, Theor.Math.Phys

  • I. Cherednik, Theor.Math.Phys
  • 1984

Nucl.Phys

  • Nucl.Phys
  • 1982