• Corpus ID: 240354465

Subsystems with shadowing property for $\mathbb{Z}^{k}$-actions

@inproceedings{Wang2021SubsystemsWS,
  title={Subsystems with shadowing property for \$\mathbb\{Z\}^\{k\}\$-actions},
  author={Lin Wang and Xinsheng Wang and Yujun Zhu},
  year={2021}
}
In this paper, subsystems with shadowing property for Z-actions are investigated. Let α be a continuous Z-action on a compact metric space X. We introduce the notions of pseudo orbit and shadowing property for α along subsets, particularly subspaces, of R. Combining with another important property “expansiveness” for subsystems of α which was introduced and systematically investigated by Boyle and Lind in [4], we show that if α has the shadowing property and is expansive along a subspace V of R… 

References

SHOWING 1-10 OF 34 REFERENCES

Expansive Subdynamics

This paper provides a framework for studying the dynamics of commuting homeomorphisms. Let α be a continuous action of Zd on an infinite compact metric space. For each subspace V of Rd we introduce a

Quasi-shadowing for partially hyperbolic diffeomorphisms

Abstract A partially hyperbolic diffeomorphism $f$ has the quasi-shadowing property if for any pseudo orbit $\{x_{k}\}_{k\in \mathbb{Z}}$, there is a sequence of points $\{y_{k}\}_{k\in \mathbb{Z}}$

NONUNIFORM MEASURE RIGIDITY

We consider an ergodic invariant measure µ for a smooth actionof Z k , k � 2, on a (k+1)-dimensional manifold or for a locally free smooth action of R k , k � 2 on a (2k + 1)-dimensional manifold. We

Quasi-Shadowing and Quasi-Stability for Dynamically Coherent Partially Hyperbolic Diffeomorphisms

Let f be a partially hyperbolic diffeomorphism. f is called has the quasi- shadowing property if for any pseudo orbit {xk}k∈Z, there is a sequence {yk}k∈Z tracing it in which yk+1 lies in the local

Shadowing vs. distality for actions of ℝ n

This article introduces the notion of weakly parametrized (wp) shadowing for actions of groups ℤ m  × ℝ n , where m, n ≥ 0 and m + n > 0. The possibility of coexistence of distality and shadowing for

Compact dynamical foliations

According to the work of Dennis Sullivan [A counterexample to the periodic orbit conjecture. Publ. Math. Inst. Hautes Études Sci. 46 (1976), 5–14], there exists a smooth flow on the five-sphere all

Quasi-stability of partially hyperbolic diffeomorphisms

A partially hyperbolic diffeomorphism f is structurally quasi-stable if for any diffeomorphism g C-close to f , there is a homeomorphism π of M such that π◦g and f ◦π differ only by a motion τ along

Shadowing for actions of some finitely generated groups

We introduce a notion of shadowing property for actions of finitely generated groups and study its basic properties. We formulate and prove a shadowing lemma for actions of nilpotent groups. We

Generic properties of Z2-actions on the interval