Corpus ID: 225086074

Sub-Finsler horofunction boundaries of the Heisenberg group

@article{Fisher2020SubFinslerHB,
  title={Sub-Finsler horofunction boundaries of the Heisenberg group},
  author={Nate Fisher and S. Golo},
  journal={arXiv: Metric Geometry},
  year={2020}
}
  • Nate Fisher, S. Golo
  • Published 2020
  • Mathematics
  • arXiv: Metric Geometry
  • We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics---that is, those that arise as asymptotic cones of word metrics---on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function. 

    References

    SHOWING 1-10 OF 19 REFERENCES
    The Horofunction boundary of the Heisenberg Group
    • 13
    • PDF
    On the horofunction boundary of discrete Heisenberg group
    • 3
    • Highly Influential
    • PDF
    The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric
    • 7
    • Highly Influential
    • PDF
    The horofunction boundary of finite-dimensional normed spaces
    • 33
    • PDF
    The action of a nilpotent group on its horofunction boundary has finite orbits
    • 13
    • Highly Influential
    • PDF
    Fine asymptotic geometry in the Heisenberg group
    • 19
    • Highly Influential
    • PDF
    Croissance des boules et des géodésiques fermées dans les nilvariétés
    • 190
    • PDF