Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.

Abstract

Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, (13)C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol-gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were alpha-helix and random coil in solution. There also existed a little beta-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no alpha-helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol-gel transformation. The velocity increased obviously when the temperature was above 30 degrees C. During the sol-gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to beta-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.

Cite this paper

@article{Tao2007StructureAP, title={Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.}, author={Wei Tao and Mingzhong Li and Chunxia Zhao}, journal={International journal of biological macromolecules}, year={2007}, volume={40 5}, pages={472-8} }