Structure and origin of Holocene cold events

Abstract

The present interglacial, the Holocene, spans the period of the last 11,700 years. It has sustained the growth and development of modern society. The millennial-scale decreasing solar insolation in the Northern Hemisphere summer lead to Northern Hemisphere cooling, a southern shift of the Intertropical Convergence Zone (ITCZ) and a weakening of the Northern Hemisphere summer monsoon systems. On the multidecadal to multicentury-scale, periods of more stable and warmer climate were interrupted by several cold relapses, at least in the Northern Hemisphere extra-tropical area. Based on carefully selected 10,000-year-long time series of temperature and humidity/precipitation, as well as reconstructions of glacier advances, the spatiotemporal pattern of six cold relapses during the last 10,000 years was analysed and presented in form of a Holocene Climate Atlas (HOCLAT; see http://www.oeschger.unibe.ch/ research/projects/holocene_atlas/). A clear cyclicity was not found, and the spatiotemporal variability of temperature and humidity/precipitation during the six specific cold events (8200, 6300, 4700, 2700, 1550 and 550 years BP) was very high. Different dynamical processes such as meltwater flux into the North Atlantic, low solar activity, explosive volcanic eruptions, and fluctuations of the thermohaline circulation likely played a major role. In addition, internal dynamics in the North Atlantic and Pacific area (including their complex interaction) were likely involved. 2011 Elsevier Ltd. All rights reserved.

10 Figures and Tables

Cite this paper

@inproceedings{Wanner2011StructureAO, title={Structure and origin of Holocene cold events}, author={Heinz Wanner and Olga Nurzadinovna Solomina and Martin Grosjean and Stefan P. Ritz and Mark{\'e}ta Jetel}, year={2011} }