Structure Theorems for Certain Gorenstein Ideals. *

@inproceedings{Elias2007StructureTF,
  title={Structure Theorems for Certain Gorenstein Ideals. *},
  author={Juan Elias and Giuseppe Valla},
  year={2007}
}
Let d = dim(A) be the dimension, e the multiplicity and h = v(m)−d the embedding codimension of A. We assume that k is a characteristic zero field (see the comment after Proposition 2.3). A classical problem in the theory of local rings is the determination of the minimal number of generators v(I) := dimk(I/nI) of the ideal I under certain restrictions on the numerical characters of A. For example, by a classical theorem of Abhyankar, we know that e ≥ h+1, and if the equality e = h+1 holds we… CONTINUE READING
7 Citations
9 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Number of generators of ideals

  • J. Elias, L. Robbiano, G. Valla
  • Nagoya Math. J. 123
  • 1991
Highly Influential
4 Excerpts

Stretched Gorenstein rings

  • J. D. Sally
  • J. London Math. Soc. 20
  • 1979
Highly Influential
4 Excerpts

On some Gorenstein loci in Hilb6(P 4 k )

  • G. Casnati, R. Notari
  • J. of Algebra 308
  • 2007
2 Excerpts

Hilbert scheme of points : overview of last ten years , Algebraic geometry , Bowdoin , 1985 ( Brunswick , Maine , 1985 )

  • A. Iarrobino
  • Proc . Sympos . Pure Math .
  • 1987

Hilbert scheme of points: overview of last ten years

  • A. Iarrobino
  • Algebraic geometry, Bowdoin, 1985
  • 1985
1 Excerpt

On symmetric numerical semigroups

  • A. P.
  • J . of Algebra

Similar Papers

Loading similar papers…