Strongly singular MASA ’ s and mixing actions in finite von Neumann algebras ∗

  title={Strongly singular MASA ’ s and mixing actions in finite von Neumann algebras ∗},
  author={Paul Jolissaint and Yves Stalder},
Let Γ be a countable group and let Γ0 be an infinite abelian subgroup of Γ. We prove that if the pair (Γ,Γ0) satisfies some combinatorial condition called (SS), then the abelian subalgebra A = L(Γ0) is a singular MASA in M = L(Γ) which satisfies a weakly mixing condition. If moreover it satisfies a stronger condition called (ST), then it provides a singular MASA with a strictly stronger mixing property. We describe families of examples of both types coming from free products, HNN extentions and… CONTINUE READING

From This Paper

Topics from this paper.


Publications referenced by this paper.

Moyennabilité intérieure et extension HNN

  • Y. Stalder
  • Ann. Inst. Fourier, Grenoble,
  • 2006
Highly Influential
8 Excerpts

The Pukánsky invariant for masas in group von Neumann algebras

  • A. M. Sinclair, R. R. Smith
  • Illinois J. Math.,
  • 2005
Highly Influential
4 Excerpts

Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras

  • S. Popa
  • J. Operator Theory,
  • 1983
Highly Influential
4 Excerpts

An infinite - dimensional torsion - free FP ∞ group

  • R. Geoghegan
  • Contemp . Math
  • 2006

Dymical Entropy in Operator Algebras

  • S. Neshveyev, E. Størmer
  • 2006
1 Excerpt

On the Laplacian subalgebra of some tensors of group von Neumann algebras

  • T. Bildea
  • Contemp. Math.,
  • 2006
1 Excerpt

Similar Papers

Loading similar papers…