Stokes matrices of hypergeometric integrals

@article{Glutsyuk2007StokesMO,
  title={Stokes matrices of hypergeometric integrals},
  author={Alexey A. Glutsyuk and Christophe Sabot},
  journal={arXiv: Dynamical Systems},
  year={2007}
}
In this work we compute the Stokes matrices of the ordinary differential equation satisfied by the hypergeometric integrals associated to an arrangement of hyperplanes in generic position. This generalizes the computation done by Ramis and Duval for confluent hypergeometric functions, which correspond to the arrangement of two points on the line. The proof is based on an explicit description of a base of canonical solutions as integrals on the cones of the arrangement, and combinatorial… 

Figures from this paper

References

SHOWING 1-10 OF 24 REFERENCES
DIFFERENTIAL GALOIS GROUPS OF CONFLUENT GENERALIZED HYPERGEOMETRIC EQUATIONS: AN APPROACH USING STOKES MULTIPLIERS
We explicitly compute the differential Galois groups of some families of generalized confluent hyper geometric equations by a method based on the asymptotic analysis of their irregular singularity at
Markov chains in a Dirichlet environment and hypergeometric integrals
Abstract The aim of this Note is to establish some relations between Markov chains in Dirichlet Environments on directed graphs and certain hypergeometric integrals associated with a particular
THE EULER BETA-FUNCTION, THE VANDERMONDE DETERMINANT, LEGENDRE'S EQUATION, AND CRITICAL VALUES OF LINEAR FUNCTIONS ON A CONFIGURATION OF HYPERPLANES. II
When working with a set of linear functions and the configration of hyperplanes they define, one encounters a matrix of multidimensional hypergeometric integrals. We give a formula which expresses
THE DETERMINANT OF A HYPERGEOMETRIC PERIOD MATRIX
We consider a function U = e-f0 ny,, f,"' on a real affine space, here fo, .., fP are linear functions, or, . . . . ap complex numbers. The zeros of the functions fr, . . . . fP form an arrangement
Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées.
oil d designe Γoperateur dΈuler z d/dz et μ\,..., μp, v\,..., vq sont des parametres complexes. Cette equation est Γequation differentielle la plus generate dont la transformed de Mellin est une
Biconfluence et groupe de Galois. (French) [Biconfluence and Galois groups
  • J. Fac. Sci. Univ. Tokyo Sect. IA Math
  • 1991
Confluence et résurgence
  • J. Fac. Sci. Univ. Tokyo Sect. IA Math
  • 1989
The Euler betafunction , the Vandermonde determinant , the Legendre equation , and critical values of linear functions on a configuration of hyperplanes
  • C . R . Math . Acad . Sci . Paris
  • 2006
Biconfluence et groupe de Galois.
...
1
2
3
...