Corpus ID: 14649808

Statistical estimation and clustering of group-invariant orientation parameters

@article{Chen2015StatisticalEA,
  title={Statistical estimation and clustering of group-invariant orientation parameters},
  author={Y. Chen and D. Wei and Gregory E. Newstadt and M. D. Graef and J. Simmons and A. Hero},
  journal={2015 18th International Conference on Information Fusion (Fusion)},
  year={2015},
  pages={719-726}
}
  • Y. Chen, D. Wei, +3 authors A. Hero
  • Published 2015
  • Mathematics, Physics, Computer Science
  • 2015 18th International Conference on Information Fusion (Fusion)
We treat the problem of estimation of orientation parameters whose values are invariant to transformations from a spherical symmetry group. Previous work has shown that any such group-invariant distribution must satisfy a restricted finite mixture representation, which allows the orientation parameter to be estimated using an Expectation Maximization (EM) maximum likelihood (ML) estimation algorithm. In this paper, we introduce two parametric models for this spherical symmetry group estimation… Expand
9 Citations
Stochastic sampling of the hyperspherical von mises–fisher distribution without rejection methods
  • G. Kurz, U. Hanebeck
  • Mathematics, Computer Science
  • 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF)
  • 2015
  • 7
  • PDF
Populating the Mix Space: Parametric Methods for Generating Multitrack Audio Mixtures
  • 2
  • PDF
Populating the mix space : parametric methods
  • PDF
A Big Network Traffic Data Fusion Approach Based on Fisher and Deep Auto-Encoder
  • 13
  • PDF
Multimodal Image Fusion and Its Applications.
  • 2

References

SHOWING 1-10 OF 29 REFERENCES
Parameter Estimation in Spherical Symmetry Groups
  • 22
  • PDF
Directional Statistics, I
  • 1,121
  • Highly Influential
Efficient learning of sparse, distributed, convolutional feature representations for object recognition
  • 124
  • PDF
Rotations, Quaternions, and Double Groups
  • 655
Coercive region-level registration for multi-modal images
  • 2
  • PDF
EBSD image segmentation using a physics-based forward model
  • 7
  • PDF
Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry
  • 216
  • PDF
STATISTICAL METHODS FOR SIGNAL PROCESSING
  • 9
  • Highly Influential
  • PDF
...
1
2
3
...