Statistical equilibrium theory for axisymmetric flows : Kelvin ’ s variational principle and an explanation for the vortex ring pinch-off process

@inproceedings{Mohsenia2001StatisticalET,
  title={Statistical equilibrium theory for axisymmetric flows : Kelvin ’ s variational principle and an explanation for the vortex ring pinch-off process},
  author={Kamran Mohsenia},
  year={2001}
}
  • Kamran Mohsenia
  • Published 2001
Thermodynamics of vorticity density fields ~v/r! in axisymmetric flows are considered, and the statistical equilibrium theories of Miller, Weichman, and Cross @Phys. Rev. A45, 2328 ~1992!#, Robert and Sommeria @J. Fluid Mech.229, 291~1991!#, and Turkington@Comm. Pure Appl. Math. 52, 781 ~1999!# for the two-dimensional flows in Cartesian coordinates are extended to axisymmetric flows. It is shown that the statistical equilibrium of an axisymmetric flow is the state that maximizes an entropy… CONTINUE READING

From This Paper

Topics from this paper.
18 Citations
8 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Statistical equilibrium measures and coherent states in two - dimensional turbulence

  • R. S. Ellis Boucher, B. Turkington
  • Commun . Pure Appl . Math .
  • 1999

‘ A mean field prediction of the asymptotic state of decaying 2 D turbulence

  • J. Stulemeyer, R. A. Pasmanter, T. J. Schep
  • J . Fluid Mech .
  • 1996

‘ Equilibrium shapes of a pair of equal uniform vortices

  • J. H. Ferziger, J. Sommeria
  • Phys . Fluids
  • 1945

Maximum entropy versus minimum enstrophy vortices

  • P. H. Chavanis, R. Pasmanter, J. Sommeria
  • Phys . Fluids

‘ A model for universal time scale of vortex ring formation

  • T. Colonius
  • Phys . Fluids

Similar Papers

Loading similar papers…