Staggered Multiple-PRF Ultrafast Color Doppler

Abstract

Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

DOI: 10.1109/TMI.2016.2518638

12 Figures and Tables

02040608020162017
Citations per Year

Citation Velocity: 13

Averaging 13 citations per year over the last 2 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Posada2016StaggeredMU, title={Staggered Multiple-PRF Ultrafast Color Doppler}, author={Daniel Posada and Jonathan Por{\'e}e and Arnaud Pellissier and Boris Chayer and Francois Tournoux and Guy Cloutier and Damien Garcia}, journal={IEEE transactions on medical imaging}, year={2016}, volume={35 6}, pages={1510-21} }