Stable real cohomology of arithmetic groups

@article{Borel1974StableRC,
  title={Stable real cohomology of arithmetic groups},
  author={A. Borel},
  journal={Annales Scientifiques De L Ecole Normale Superieure},
  year={1974},
  volume={7},
  pages={235-272}
}
  • A. Borel
  • Published 1974
  • Mathematics
  • Annales Scientifiques De L Ecole Normale Superieure
Given a discrete subgroup Γ of a connected real semisimple Lie group G with finite center there is a natural homomorphism $$j_\Gamma ^q:I_G^q \to {H^q}\left( {\Gamma ;c} \right)\quad \left( {q = 0,1, \ldots } \right),$$ (1) where I G q denotes the space of G-invariant harmonic q-forms on the symmetric space quotient X=G/K of G by a maximal compact subgroup K. If Γ is cocompact, this homomorphism is injective in all dimensions and the main objective of Matsushima in [19] is to give a… Expand
596 Citations

References

SHOWING 1-10 OF 28 REFERENCES
A square integrability criterion for the cohomology of arithmetic groups.
  • H. Garland, W. Hsiang
  • Mathematics, Medicine
  • Proceedings of the National Academy of Sciences of the United States of America
  • 1968
  • 16
  • PDF
Groupes réductifs sur un corps local
  • 883
  • PDF
Groupes reductifs (Publ
  • Math. I. H. E. S., vol. 27
  • 1965
On Betti numbers of compact
  • locally symmetric Riemannian manifolds
  • 1962
Périodicité des groupes d'homotopie stables des groupes classiques, d'Aprés Bott
  • 16
  • Highly Influential
SERRE, Corners and arithmetic groups (Comm
  • Math. Helv.,
  • 1974
Cohomohgie reelle stable de groupes S-arithmetiques (C
  • R. Acad. Sc Paris t 274 serie A 1972,
  • 1972
...
1
2
3
...