Stable limit laws for the parabolic Anderson model between quenched and annealed behaviour

@article{Gartner2011StableLL,
  title={Stable limit laws for the parabolic Anderson model between quenched and annealed behaviour},
  author={J. Gartner and Adrian Schnitzler},
  journal={Annales De L Institut Henri Poincare-probabilites Et Statistiques},
  year={2011},
  volume={51},
  pages={194-206}
}
  • J. Gartner, Adrian Schnitzler
  • Published 2011
  • Mathematics
  • Annales De L Institut Henri Poincare-probabilites Et Statistiques
  • We consider the solution to the parabolic Anderson model with homogeneous initial condition in large time-dependent boxes. We derive stable limit theorems, ranging over all possible scaling parameters, for the rescaled sum over the solution depending on the growth rate of the boxes. Furthermore, we give sufficient conditions for a strong law of large numbers. Resume. Nous considerons la solution du modele parabolique d’Anderson avec condition initiale homogene sur de grandes boites dependantes… CONTINUE READING
    13 Citations
    The Parabolic Anderson Model
    • 42
    • PDF
    Limit theorems for time-dependent averages of nonlinear stochastic heat equations
    Almost Sure Asymptotics for the Total Mass
    Details About Intermittency
    Moment Asymptotics for the Total Mass
    Time-Dependent Potentials
    Some Proof Techniques

    References

    SHOWING 1-10 OF 28 REFERENCES
    A Scaling Limit Theorem for the Parabolic Anderson Model with Exponential Potential
    • 19
    • PDF
    The Universality Classes in the Parabolic Anderson Model
    • 60
    • PDF
    Time Correlations for the Parabolic Anderson Model
    • 14
    • PDF
    Parabolic problems for the Anderson model
    • 100
    Parabolic problems for the Anderson model
    • 136
    Transition from the annealed to the quenched asymptotics for a random walk on random obstacles
    • 31
    • Highly Influential
    • PDF
    FLUCTUATIONS OF THE FREE ENERGY IN THE REM AND THE P-SPIN SK MODELS
    • 86
    • PDF
    Limit laws for power sums and norms of i.i.d. samples
    • 5
    • PDF
    Transition asymptotics for reaction-diffusion in random media
    • 15
    • PDF