Stable division and essential normality: the non-homogeneous and quasi homogeneous cases

@article{Biswas2015StableDA,
  title={Stable division and essential normality: the non-homogeneous and quasi homogeneous cases},
  author={S. Biswas and O. Shalit},
  journal={arXiv: Functional Analysis},
  year={2015}
}
  • S. Biswas, O. Shalit
  • Published 2015
  • Mathematics
  • arXiv: Functional Analysis
  • Let $\mathcal{H}_d^{(t)}$ ($t \geq -d$, $t>-3$) be the reproducing kernel Hilbert space on the unit ball $\mathbb{B}_d$ with kernel \[ k(z,w) = \frac{1}{(1-\langle z, w \rangle)^{d+t+1}} . \] We prove that if an ideal $I \triangleleft \mathbb{C}[z_1, \ldots, z_d]$ (not necessarily homogeneous) has what we call the "approximate stable division property", then the closure of $I$ in $\mathcal{H}_d^{(t)}$ is $p$-essentially normal for all $p>d$. We then show that all quasi homogeneous ideals in two… CONTINUE READING
    2 Citations

    References

    SHOWING 1-10 OF 30 REFERENCES
    Essential normality, essential norms and hyperrigidity
    • 20
    • PDF
    Essential Normality of Homogeneous Submodules
    • 27
    • PDF
    Stable polynomial division and essential normality of graded Hilbert modules
    • O. Shalit
    • Mathematics, Computer Science
    • J. Lond. Math. Soc.
    • 2011
    • 32
    • PDF
    p-Summable Commutators in Dimension d
    • 59
    • PDF
    p-essential normality of quasi-homogeneous Drury-Arveson submodules
    • 10
    • PDF
    Essentially normal Hilbert modules and K-homology
    • 67
    A harmonic analysis approach to essential normality of principal submodules
    • 33
    • PDF
    A new kind of index theorem
    • 40
    • PDF
    Subalgebras ofC*-algebras III: Multivariable operator theory
    • 384
    • PDF