Stable cohomology of alternating groups

@article{Bogomolov2011StableCO,
  title={Stable cohomology of alternating groups},
  author={F. Bogomolov and Christian B{\"o}hning},
  journal={Central European Journal of Mathematics},
  year={2011},
  volume={12},
  pages={212-228}
}
  • F. Bogomolov, Christian Böhning
  • Published 2011
  • Mathematics
  • Central European Journal of Mathematics
  • AbstractWe determine the stable cohomology groups ($$H_S^i \left( {{{\mathfrak{A}_n ,\mathbb{Z}} \mathord{\left/ {\vphantom {{\mathfrak{A}_n ,\mathbb{Z}} {p\mathbb{Z}}}} \right. \kern-\nulldelimiterspace} {p\mathbb{Z}}}} \right)$$ of the alternating groups $$\mathfrak{A}_n$$ for all integers n and i, and all odd primes p. 
    6 Citations
    Isoclinism and Stable Cohomology of Wreath Products
    • 16
    • Highly Influenced
    • PDF
    Noether’s problem for orientation p-subgroups of symmetric groups
    • 1
    • PDF
    Universal spaces for unramified Galois cohomology
    • 3
    • PDF
    What are the analogs of universal spaces for varieties over k = Q̄ ?

    References

    SHOWING 1-10 OF 24 REFERENCES
    Isoclinism and Stable Cohomology of Wreath Products
    • 16
    • PDF
    Stable cohomology of finite and profinite groups
    • 13
    • PDF
    The cohomology of the symmetric groups
    • 8
    • Highly Influential
    • PDF
    Cohomology of finite groups
    • 244
    Motivic cohomology and unramified cohomology of quadrics
    • 19
    Modules de cycles et classes non ramifi\'ees sur un espace classifiant
    • 5
    • PDF
    The image of the map from group cohomology to Galois cohomology
    • 4
    • PDF