Stabilization of Galerkin approximations of transport equations by subgrid modeling

  title={Stabilization of Galerkin approximations of transport equations by subgrid modeling},
  author={Jean-Luc Guermond},
This paper présents a stabilization technique for approximating transport équations. The key idea consists in introducing an artificial diffusion based on a two-level décomposition of the approximation space. The technique is proved to have stability and convergence properties that are similar to that of the streamline diffusion method. AMS Subject Classification. 35L50, 65N30. Received: February 20, 1998. Revised: May 31, 1999. 

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.
Showing 1-10 of 16 extracted citations


Publications referenced by this paper.
Showing 1-10 of 32 references

Multiscale phenomena : Green ' s function , the DirichlettoNeumann formulation , subgrid scale models , bubbles and the origins of stabilized formulations

  • T. J. R. Hughes
  • C . R . Acad . Sci . Paris Sér .
  • 1999

Mémoire de DEA

  • M. Barton-Smith
  • Analyse Numérique, Paris XI, Internai report…
  • 1999
1 Excerpt

Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs monotones

  • J.-L. Guermond
  • C.R. Acad. Sci. Paris Sér. 7 328
  • 1999
1 Excerpt

Postprocessing the Galerkin method: a novel approach to Approximate Inertial Manifolds

  • B. Garcia-Archilla, X Novo, E. S. Titi
  • SIAM J. Numer. Anal 35
  • 1998
1 Excerpt

Comparison of some finite element methods for solving the diffusion-convection-reaction équations

  • R. Codina
  • Comput. Methods Appl. Mech. Engrg. 156
  • 1997
1 Excerpt

Similar Papers

Loading similar papers…